o UNIVERSITAT ve {)\E
BARCELONA D 2

deep learning

Jordi Vitria
Universitat de Barcelona

“Classical” applications of computer vision:
object classification, detection and segmentation... in controlled
environments.

-~

-

3
; !
] ’ , ,
W .
W oo -l
ey n'%“ R |
Fie

-

From 2012 deep learning has paved the way for new applications:
navigation and mapping.

Tienda Aspiradoras Ventiladores y Calefactores Airblade™ Micuenta Soporte

Robot Dyson 360 Eye™

El nuevo robot aspirador de Dyson

Vea a James Dyson
presentando el
nuevo Dyson 360
Eye™ en Tokio

New applications: face recognition.

Who is this?

Who is this? Who is this? Who is this?

DeepFace (Facebook): Accuracy of 97.35%

New applications: Image Upscaling (Flipboard)

Stu in Mostly Mirrorless 3d

How Much
Resolution Do

You Really
Need?

Photography Life via RSS
Each year camera manufacturers are

pushing the limits of sensor technology ‘% ;

and the latest trend has been to increase
sensor resolution to numbers ...

CAMERAS O« < -I—

AR Tt o A O
PR BB EIATR LIV =~ T 2 dar W

L BT 'E_’:.... »
P e T I '.'.J‘.l. e -ix‘ ¥ £ = - """‘“""’"’ ¥ v 3

- ~ « - L e s K AR e,
S]

N
3 DS e At "u‘o
e e R Y T o T . SN T T T ——

http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Image Upscaling (Flipboard)

-~

.

N
v’ “‘. '. :‘

S—

Megat Ibrahim Mahfuz in The Aperture Collective

Bruce Davidson’s Ode to
Color Photography

TIME . Laurence Butet-Roch
Color photography has never been an after-thought for
Magnum Photos' Bruce Davidson As the glaring winter light
S filters through the sheer curtains that line his Upper West Side
apartment, Bruce Davidson looks around his vibrantly adorned
: " living room. He's trying to decide between the tan ...

MAGNUM PHOTOS O <« <© +
3 likes = 28 reflips

http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Image Upscaling (Flipboard)

Bicubic

Model

http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Non visual data prediction

w [&d Discover (i Groups ¢t Upload (5) Buy

(2] signup Log in

Holbav in the morning
Mihai Dulu

i’
NN |
0 Download

v ®
16 38 14

TAGS DETAILS
shills #land seh Category Landscapes 99 8 Current
ills #landscape #shee)
P P Uploaded About 21 hours ago = Pulse

99.8 ris

Popular
May 11, 2015

What is Pulse?

Pulse is a score out of 100 points that measures how popular a photo is. Pulse is calculated by an
algorithm, which is unique to 500px and is based on votes (Likes & Favorites) on your photo from the
community. The Pulse algorithm was designed to promote daily exposure of new photographs and
photographers. It is not necessarily a measure of photograph's quality.

New applications: Automatic Image Captioning

woman, crowd, cat,
camera, holding, purple

1. detect

-

2. generate
sentences

-

3. re-rank
sentences

J
A purple camera with a woman. \
A woman holding a camera in a crowd.

A woman holding a cat. Y,
,)

#1 A woman holding a
camera in a crowd.)

T

http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx

=
" Why Deep Learning?

It's not rocket
sciencel

b\
\“‘

\'\ =

-

It's powerful!

(:) UNIVERSITATve
ur® BARCELONA

* In 1943, neurophysiologist Warren McCulloch and
mathematician Walter Pitts wrote a paper on how neurons
might work. In order to describe how neurons in the brain
might work, they modeled a simple neural network using

electrical circuits.

* In 1949, Donald Hebb wrote The Organization of Behavior, a
work which pointed out the fact that neural pathways are
strengthened each time they are used, a concept
fundamentally essential to the ways in which humans learn. If
two nerves fire at the same time, he argued, the connection
between them is enhanced.

* In 1957 Frank Rosenblatt attempted to build a kind of
mechanical brain called the Perceptron, which was billed as
“a machine which senses, recognizes, remembers, and
responds like the human mind”.

=¢S] UNIVERSITAT e
ARCELONA

* In 1962, Widrow & Hoff developed a learning
procedure that examines the value before the weight
adjusts it (i.e. 0 or 1) according to the rule: Weight
Change = (Pre-Weight line value) * (Error / (Number
of Inputs)). It is based on the idea that while one
active perceptron may have a big error, one can
adjust the weight values to distribute it across the
network, or at least to adjacent perceptrons.

A critical book written in 1969 by Marvin Minsky
and his collaborator Seymour Papert showed that
Rosenblatt’s original system was painfully limited,
literally blind to some simple logical functions like
“exclusive-or” (As in, you can have the cake or the
pie, but not both). What had become known as the
field of “neural networks” all but disappeared.

i,i> UNIVERSITAToe
ui® BARCELONA

First neural network winter is coming

e In 1982, interest in the field was renewed. John Hopfield of Caltech
presented a paper to the National Academy of Sciences. His approach

was to create more useful machines by using bidirectional lines.
Previously, the connections between neurons was only one way.

* In 1986, the problem was how to extend the Widrow-Hoff rule to
multiple layers. Three independent groups of researchers, which
included David E. Rumelhart, Geoffrey E. Hinton and Ronald J.
Williams, came up with similar ideas which are now called back-

propagation networks because it distributes pattern recognition
errors throughout the network.

* From 1986 to mid 90’s new developments arised: convolutional
neural networks (Y.LeCun), unsupervised learning (Y.Bengio), RBM
(G.Hinton), etc. But, by this point new machine learning methods
had begun to also emerge, and people were again beginning to be

skeptical of neural nets since they seemed so intuition-based and
since computers were still barely able to meet their computational
needs.

=85] UNIVERSITAT s
ux BARCELONA

Second neural network winter is coming

«
- -
e T G A
pa——s

—

* With the ascent of Support Vector Machines and the failure of

backpropagation, the early 2000s were a dark time for neural net
research.

* Then, what every researcher must dream of actually happened:
G.Hinton, S5.Osindero, and Y.W.Teh published a paper in 2006 that
was seen as a breakthrough, a breakthrough significant enough to
rekindle interest in neural nets: A fast learning algorithm for deep
belief nets.

« After that, following Moore's law, computers got dozens of times
taster (GPUs) since the slow days of the 90s, making learning with
large datasets and many layers much more tractable.

55 UNIVERSITAT o
i) BARCELONA

Neural Networks Reborn

Evolucid de l'interes

|4

® deep learning ® machine learning

Terme de cerca Terme de cerca

. tha

Mitjana 1degen. 2. 1 de gen. 2012

Google Trends

555 UNIVERSITAT e
il BARCELONA

NVIDIA

NVIDIA Jetson TK1 Development Kit
WYY Yrie ¥ 33 customer reviews

| 24 answered questions

List Price: $199.99
Price: $170.77 + $49.57 Shipping & Import Fees
Deposit to Spain Details
You Save: $29.22 (15%)

Item is eligible: No interest if paid in full within 6 months
with the Amazon.com Store Card.

BIESERIEA)

In Stock.
This item ships to Barcelona, Spain. Want it Monday, Feb.
12? Order within 5 hrs 25 mins and choose

Roll over image to zoom in AmazonGlobal Priority Shipping at checkout. Learn more
Ships from and sold by Amazon.com. Gift-wrap available.

» NVIDIA Kepler GPU with 192 CUDA cores

» NVIDIA 4-Plus-1 quad-core ARM Cortex-A15 CPU

» 2 GB memory, 16 GB eMMC

» Gigabit Ethernet, USB 3.0, SD/MMC, miniPCle

« HDMI 1.4, SATA, Line out/Mic in, RS232 serial port

« Expansion ports for additional display, GPIOs, and
high-bandwidth camera interface

=8 UNIVERSITATos
BARCELONA

=S

NVIDIA DGX-1

WORLD’S FIRST
DEEP LEARNING SUPERCOMPUTER

170TF | “250 servers in-a-box” | nvidia.com/dgx1

$129,000
b

STANDARD MACHINE LEARNING

Loss Function
Batch Optimization

Feature Library
Custom Features

DECISION

*

Trainable classifier]

Hand-engineered

features 1

Raw Data]

Example

A few classes +
Hinge Loss (SVM) +
Seqguential Minimal
Optimization +
HOG +

Deformable Part
Models

DEEP LEARNING

Backpropagation + Tricks

DECISION

Trainable classifier
Loss Function

Network Architecture +
Stochastic Gradient Descend .
OENAsHc \aradient Leseen Trainable features |

Raw Data

N

Recurrent

ImageNet Architectures
(deeply cascaded
nonlinearities)

Tensorflow

Backward
-mode

Automatic Deep Learning
Differentiation

SGD + Training
Tricks

52 UNIVERSITAT o
BARCELONA 23

Definitions

* Neural Networks (NN) is a beautiful biologically-
inspired programming paradigm which enables a
computer to learn from observational data.

* Deep Learning (DL) is a powertul set of
techniques (tricks?) for learning in neural networks.

* NN and DL currently provide the best solutions to
many problems in image recognition, speech
recognition, and natural language processing.

Basic learning setup with one function

Training data: a set of (z(™), y(™)) pairs.
Learn a function f,, : £ — y to predict on new inputs .

1. Choose a model function family f,,.

2. Optimize parameters w.

High capacity models

 How to find the parameters of the function?

* We can use optimization techniques (minimizing a
function, the loss function, that measures the discrepancy
between the outcomes of a model and the desired
outcomes).

* To optimize, we must compute the derivative of every
parameter with respect to the loss function.

e But we have (possibly) millions of parameters and the loss
function is a (possibly) large composition of functions...

55 UNIVERSITAT o
i~ BARCELONA 20

Automatic Differentiation

import autograd.numpy as np # Thinly-wrapped version of Numpy
from autograd import grad

def taylor_sine(x): # Taylor approximation to sine function
ans = currterm = X

i=290

while np.abs(currterm) > 0.001:
currterm = -currterm * x**2 / ((2 * 1 + 3) * (2 * 1 + 2))
ans = ans + currterm
i+=1

return ans

grad _sine = grad(taylor_sine)
print "Gradient of sin(pi) is", grad_sine(np.pi)

+ UNIVERSITATos
BARCELONA

W)

27

5 UNIVERSITAT o
-+ BARCELONA

SGD-based logistic regression

import autograd.numpy as np
from autograd import grad

def sigmoid(x):
return 0.5*%(np.tanh(x) + 1)

def logistic_predictions(weights, inputs):
Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))

def training_loss(weights):
Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights, inputs)
label probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))

Build a toy dataset.

inputs = np.array([[©.52, 1.12, ©.77],
[e.88, -1.08, ©.15],
[0.52, .86, -1.30],
[6.74, -2.49, 1.39]])

targets = np.array([True, True, False, True])

Define a function that returns gradients of training loss using autograd.
training_gradient_fun = grad(training_loss)

Optimize weights using gradient descent.
weights = np.array([0.0, 0.9, 0.0])
print "Initial loss:", training_loss(weights)
for i in xrange(100):
weights -= training_gradient_fun(weights) * 9.01

print "Trained loss:", training_loss(weights)

Neural Networks

1-Layer Net function model: f(z) = o(w’ - = + b)

Non linear function. F.e. sigmoid

c‘g: /
J. 6},
"/'.
D.,/‘g:
2 0. 2
r--r‘:—:_-__ _________________ \

Neural Networks

1-Layer Net function model: f(z) = o(w’ - 2 + b)

Training:
1. Assume a Squared-Error (or Cross Entropy) LOSS Loss(w) = %Z(a(wT:z:(m)) — y(m))2
2. Initialize w m

3. Compute v, Loss = Z Error™ s o’ (wTz(™)) « g™
4, w—w—y(VyLoss) m
5. Repeat steps 3-4 until some condition satisfied

1-layer nets model linear hyperplanes. It is a trainable

system but it is not powerful.
——— ——

Training a two layer by backpropagation

Predict

Adjust
weights

Training a two layer by backpropagation

Predict

Adjust
weights

n For each sample, compute f(z(™) = o(Q_jwj-o(d, wijx?(:m))).

E If f (w(m)) —+ y™) back-propagate error and adjust weights {w;;,w;}

Training a two layer by backpropagation

Predict

Adjust
weights

All updates involve some scaled error from output * input feature.

2-layer nets are universal function approximators (given
infinite hidden nodes). It is a powerful system but when the

number of hidden nodes increases it is not trainable.
— —

Backpropagation

f(wgz:)- :

o 1 + 6—(w0:1:0—|—w1x1—|—w2)

w0 2.00

1.00 ﬁ]\ -1.00/6;\ 0.37 @ 137 173073
e N7 -ozokp/ 053 __/ -053 1.00

0.20

Backpropagation

We can structure our code in layers,
where you can derive the local
gradients, then chain the gradients
during backpropagation.

555 UNIVERSITAT e
BARCELONA

1-layer neural net model

Graphical Representation

36

N

N

0
1,1

5

\

/

2

%

LK

/

\
(U

%

"’w

{

'0
@

‘

)

4

i

20708
EOEL

b

'\/4}(

(

{

QA

[

/

2-layer neural net model

37

Deep Models

'Inception 5 (GoogLeNet)

Inception 7a

'Going Deeper with Convolutions, [C. Szegedy et al, CVPR 2015)

Activation functions

Sigmoid

* Squashes numbers to range [0,1].
* Historically popular since they have nice interpretation as
a saturating “firing rate” of a neuron.

2 BIG problems:
 Saturated neurons “kill” the gradients.
* Sigmoid outputs are not zero centered.

Activation functions

....................

* Squashes numbers to range [-1,1].
e Zero centered.

1 BIG problem:
 Saturated neurons “kill” the gradients.

Activation functions

10 F

....................

* Does not saturate.
» Computationally efficient.
* Fast convergence.

1 small problem:
e Dead RelLU (x < 0).

Activation functions

- Use RelLU. Be careful with your learning rates

ry out tanh but don’t expect much

- Never use sigmoid

|

=10 !

original data

Training

Step 1: Preprocess the data

zero-centered data

-10

X -= np.mean(X, axis

9

0)

10

-10

normalized data

-10

-5 Y -

X /= np.std(X, axis

10

0)

e Se
e Se

Training

Step 2: Initialize well

- weights to small random numbers.

' pblases to zero.

Training

Step 3: Use stochastic gradient descent.

Strategies to build powerful decision functions

Given a dictionary of non linear decision functions g¢;,...,g,, we can build
a non linear decision function by combination or by composition:

n Combination f(il?) = a171 (il?) + o T angn(a;')

Bl Composition f(x) = gi(ga(.-- (gn(a))...)

Deep Learning is based on the composition of some
differentiable functions that produce a trainable

and powerful system.
——— ——

Given same number of units, a deeper architecture
IS more expressive than a shallow one.

1-layer nets model linear hyperplanes
2-layer nets are universal function approximators (given infinite hidden nodes)

3-layer nets are universal function approximators with fewer nodes/weights

A DNN with two hidden layers and a modest number of

hidden units can sort N N-bit numbers.
T — B

Convolutional neural networks

C3:1. maps 16@10x10

C1: feature maps S4 f. maps 1 x5
!ihgaug 002528 S2:1. ma 6@505 layer OUTPUT
6@14x1 r F6 layer 4o
| \
| Full conr{ecbon | Gausslan connections
Convolutions Subsampling Convolunons Subsamplung Full connection

LeNet, 1980

Convolutional neural networks

They are just neural networks but with local connectivity
and shared weights.

a hidden neuron in
next layer

32

%

Full connectivity: 32x32x3 weights

Local connectivity: one neuron will connect to, e.g. 5x5x3 chunk
and only have 5x5x3 weights.

Convolutional neural networks

They are just neural networks but with local connectivity
and shared weights.

A= L
f§>boooo
Ve |/

Multiple neurons all looking at the same region of the input

volume, stacked along depth.

Convolutional neural networks

Input [32 x 32 x3], 30 neurons (bands) with receptive fields 5x5:
=> Qutput volume: [32 x 32 x 30] (= 30720 neurons)

Each neuron has 5*5*3 (=75) weights
=> Number of weights in such layer: 30720 * 75 ~ 3 million

Convolutional neural networks

PARAMETER SHARING: lets not learn the same
thing across all spatial locations - > 30 different
(spatially invariant) filters
instead of 30 specific filters at each location.

Before:
#weights in such layer: (32*32*30) * 75 = 3 million

Now: (parameter sharing)
#weights in the layer: 30 * 75 = 2250.

Convolutional neural networks

20

100

0 20 40 60 80 100

Convolutional neural networks

Sometimes it's not a good idea to share the parameters

p &
’f’ot

\-
R

E -

-

=

REPRESENTATION
SFC labels

C1: Cc3: L4: L5: L6: F7: F8
Calista Flockhart 0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16x5x5x16 409d 4030d
Detection & Localization @152¢X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

=85] UNIVERSITAT s
ux BARCELONA

Recurrent neural layer model

Variable-size inputs + sequences

S; = tanh (UX; + Ws;_1)

Y: = Vs,
Output Y
f.e. dimension 8000 4

V f.e. dimension 8000x10

Hidden State M/ f.e. dimension 100x100
f.e. dimension 100

U f.e. dimension 100x8000

Input T
f.e. dimension 8000 TOTAL: 1,610,000 parameters

Recurrent neural layer model

Variable-size inputs + sequences

St — tal’lh (UX, + Wst_l)
y: = Vs,

class RNN:
def step(self,x):
self.h = np.tanh(np.dot(self.W ss, self.h) +
np.dot(self.W xs, self.x))
y = np.dot(self.W sy, self.h)
return y

,,,,,,,,,,,

=%5] UNIVERSITATos
ux BARCELONA

Recurrent neural layer model

Variable-size inputs + sequences

Output at time step t yt_l yt
A A
Hidden state

attime step t -\

o St—1 »| St

The first hidden state [[[[
Is Initialized to all zeroes
Input at time step t xt— 1 xt

98] UNIVERSITAT o
ARCELONA

Yt+1

Tt41

58

Recurrent neural layer model

Variable-size inputs + sequences

N\ |\ ~)
> —® D > -
CGanh>
[b A
|<IJI|<J||t h] | o]
N
Q URdN Y,

59

...........

i UNIVERSITAToe
BARCELONA

Recurrent neural layer model
A
A

— A —(s)

@

_>A

> S E)>
> &) >

®
L©

S

©
L

‘I’4———-A:< A' A' < /¥<F_—‘i’

@Al A—A—5A @
155 9

Encoder

Decoder

Encoder-Decoder

Bidirectional

60

Recurrent neural layer model

think I <EOS> > .. > <EOS>

55 UNIVERSITATos
BARCELONA

But deep networks are hard to train....

Vanishing gradient problem: 0; may vanish after repeated
multiplication.

e MNIST digit classification task; 400 trials (random seed)
o Each layer: initialize w;; by uniform[—1/+/(Fanln),1/+/(Fanin)]

@ Although L + 1 layers is more expressive, worse error than L layers

'-E‘e,e ;Tt 1 S04 /g2 \3
2 : ! GECDYT 6T
=2t i : 7 7027f8'6¢(
e ; | 78591762
S : ! : 17609757
— 4 : | " &
e I e B s T ereeeevem I L I W X
: | - ;
B | — —
& :

141 —_

number of layers

What changed since the 80's”?

« Computers were slow. So the neural networks of past were tiny. And
tiny neural networks cannot achieve very high performance on
anything. In other words, small neural networks are not powerful.

« Datasets were small. So even if it was somehow magically possible
to train LDNNs, there were no large datasets that had enough
information to constrain their numerous parameters. So failure was

inevitable.

* Nobody knew how to train deep nets. The current best object
recognition networks have between 20 and 100 successive layers of
convolutions. A 2 layer neural network cannot do anything good on
object recognition. Yet back in the day everyone was very sure that
deep nets cannot be trained with SGD, since that would've been too

good to be true!

Convolutional neural networks

CONV CONV POOLCONV CONV POOL CONV CONV POOL gc
1 RelLU 1 RelLU RelLU RelLU l RelLU 1 ReLUl Fu||y_connected)

{ }

1

h

.

e e]

@lrplane
Ehip

i
oy
iy
kel
; WOFSG

SRR —
ENAEREREERN -
ENRDEEREERN

HEERENRENEE
HERENERNEE —
E RN EEEEEE
ENAEENEEEDN -

EENAEENERE S

Convolutional neural networks

Modern CNNs:

- use filter sizes of 3x3 (maybe even 2x2 or 1x1!)
- use pooling sizes of 2x2 (maybe even less - e.q.
fractional pooling!)

- stride 1

- very deep

Learning

The success of Deep Learning hinges on a very fortunate
fact: that well-tuned and carefully-initialized stochastic
gradient descent (SGD) can train LDNNs on problems that
occur in practice. It is not a trivial fact since the training error

of a neural network as a function of its weights is highly
non-convex.

The problem of training neural networks is NP-hard, and in fact there
exists a family of datasets such that the problem of finding the best
neural network with three hidden units is NP-hard. And yet, SGD just
solves it in practice. This is the main pillar of deep learning.

Learning

Climbing the correlation mountain

We can say fairly confidently that successful LDNN training
relies on the “easy” correlation in the data, which allows
learning to bootstrap itself towards the more “complicated”
correlations in the data.

Neural networks start their learning process by noticing the
most “blatant” correlations between the input and the
output, and once they notice them they introduce several
hidden units to detect them, which enables the neural
network to see more complicated correlations.

Training deep networks: practical advice

Get the data: Make sure that you have a high-quality
dataset of input-output examples that is large,
representative, and has relatively clean labels. Learning is
completely impossible without such a dataset.

Training deep networks: practical advice

Preprocess the data:

® |t is essential to center the data so that its mean is zero and so
that the variance of each of its dimensions is one. Sometimes,
when the input dimension varies by orders of magnitude, it is
better to take the log(1 + x) of that dimension.

e This is the case because the weights are updated by the
formula: change in w;; o< z;(0L/0y;)

(w denotes the weights from layer x to layery, and L is the loss
function). If the average value of the x’s is large (say, 100), then the
weight updates will be very large and correlated, which makes
learning bad and slow. Keeping things zero-mean and with small
variance simply makes everything work much better.

Training deep networks: practical advice

Use minibatches. Modern computers cannot be efficient
it you process one training case at a time. It is vastly
more efficient to train the network on minibatches of
128 examples, because doing so will result in massively
greater throughput.

It would actually be nice to use minibatches of size 1, and they
would probably result in improved performance and lower
overtfitting; but the benefit of doing so is outweighed the massive
computational gains provided by minibatches. But don't use very
large minibatches because they tend to work less well and overfit
more. So the practical recommendation is: use the smaller
minibatch that runs efficiently on your machine.

Training deep networks: practical advice

Gradient normalization: Divide the gradient by
minibatch size. This is a good idea because of the
following pleasant property: you won't need to change
the learning rate (not too much, anyway), if you double
the minibatch size (or halve it).

Training deep networks: practical advice

Learning rate schedule: Start with a normal-sized learning
rate (LR) and reduce it towards the end.

e Atypical value of the LR is 0.1.

e Use a validation set to decide when to lower the learning rate and
when to stop training (e.g., when error on the validation set starts to
iIncrease).

e A practical suggestion for a learning rate schedule: it you see that you
stopped making progress on the validation set, divide the LR by 2 (or
by 5), and keep going. Eventually, the LR will become very small, at
which point you will stop your training.

e Worry about the Learning Rate. One useful idea is to monitor the ratio
between the update norm and the weight norm. This ratio should be
at around 10-3. If it is much smaller then learning will probably be too
slow, and if it is much larger then learning will be unstable and will
probably fail.

Training deep networks: practical advice

Weight initialization. Worry about the random
initialization of the weights at the start of learning.

e |f you are lazy, it is usually enough to do something like 0.02 *
randn(num_params).

e |f it doesn’t work well (say your neural network architecture is
unusual and/or very deep), then you should initialize each
weight matrix with the init_scale / sgrt(layer_width) * randn. In
this case init_scale should be setto 0.1 or 1, or something like
that.

Training deep networks: practical advice

Fun story: researchers believed, for many years, that SGD

cannot train deep neural networks from random
initializations.

Every time they would try it, it wouldnt work. Embarrassingly,
they did not succeed because they used the “small random
weights” for the initialization, which works great for shallow
nets but simply doesn't work for deep nets at all. When the
nets are deep, the many weight matrices all multiply each
other, so the effect of a suboptimal scale is amplified.

Training deep networks: practical advice

Data augmentation: be creative, and find ways to
algorithmically increase the number of training cases that are
in your disposal.

If you have images, then you should translate and rotate them; if
you have speech, you should combine clean speech with all types
of random noise; etc. Data augmentation is an art (unless you're
dealing with images). Use common sense.

()

;@
XX XX
~ XKL ORI

SRR~ EAKA
A B
N
@/ mrobu
N\

Training deep networks: practical advice
performance. It's trivial to implement and there’s little reason

Dropout. Dropout provides an easy way to improve
to not do it.

(b) After applying dropout.

a) Standard Neural Net

Training deep networks: practical advice

Dropout. Dropout provides an easy way to improve
performance. It's trivial to implement and there’s little reason
to not do it.

Remember to tune the dropout probability, and to not forget to turn
off Dropout and to multiply the weights by (namely by 1-dropout
probability) at test time. Also, be sure to train the network for longer.
Unlike normal training, where the validation error often starts
increasing after prolonged training, dropout nets keep getting
better and better the longer you train them. So be patient.

Training deep networks: practical advice

Ensembling. Train 10 neural networks and average their
predictions. It's a fairly trivial technique that results in easy,
sizeable performance improvements.

One may be mystified as to why averaging helps so much, but there is
a simple reason for the effectiveness of averaging. Suppose that two
classifiers have an error rate of 70%. Then, when they agree they are
right. But when they disagree, one of them is often right, so now the
average prediction will place much more weight on the correct
answer. The effect will be especially strong whenever the network is
confident when it's right and unconfident when it's wrong.

It you mix all these ingredients you can...

It you mix all these ingredients you can...

Economic growth has slowed down in recent vyears

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

La croissance économique s' est ralentie ces derniéres années .

It you mix all these ingredients you can...

Baidu Deep Speech

T

ey

Bi-girechonal Recurrent |

) | A

B
Neural Network (BORNN) i' -
(@ ®lalt
|

(@ o)
|

It you mix all these ingredients you can...

It you mix all these ingredients you can...

