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“Classical” applications of computer vision:  
object classification, detection and segmentation… in controlled 

environments.



From 2012 deep learning has paved the way for new applications:   
navigation and mapping.



DeepFace (Facebook): Accuracy of 97.35%

New applications:  face recognition.



http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Image Upscaling (Flipboard)
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New applications: Image Upscaling (Flipboard)



New applications: Non visual data prediction

What is Pulse? 

Pulse is a score out of 100 points that measures how popular a photo is. Pulse is calculated by an 
algorithm, which is unique to 500px and is based on votes (Likes & Favorites) on your photo from the 

community. The Pulse algorithm was designed to promote daily exposure of new photographs and 
photographers. It is not necessarily a measure of photograph's quality.



New applications: Automatic Image Captioning

http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx



 10

Why Deep Learning?



It’s powerful!

It’s funny! It’s not rocket 
science!



• In 1943, neurophysiologist Warren McCulloch and 
mathematician Walter Pitts wrote a paper on how neurons 
might work. In order to describe how neurons in the brain 
might work, they modeled a simple neural network using 
electrical circuits. 

• In 1949, Donald Hebb wrote The Organization of Behavior, a 
work which pointed out the fact that neural pathways are 
strengthened each time they are used, a concept 
fundamentally essential to the ways in which humans learn. If 
two nerves fire at the same time, he argued, the connection 
between them is enhanced. 

• In 1957 Frank Rosenblatt attempted to build a kind of 
mechanical brain called the Perceptron, which was billed as 
“a machine which senses, recognizes, remembers, and 
responds like the human mind”.



• In 1962, Widrow & Hoff developed a learning 
procedure that examines the value before the weight 
adjusts it (i.e. 0 or 1) according to the rule: Weight 
Change = (Pre-Weight line value) * (Error / (Number 
of Inputs)). It is based on the idea that while one 
active perceptron may have a big error, one can 
adjust the weight values to distribute it across the 
network, or at least to adjacent perceptrons.  

• A critical book written in 1969 by Marvin Minsky 
and his collaborator Seymour Papert showed that 
Rosenblatt’s original system was painfully limited, 
literally blind to some simple logical functions like 
“exclusive-or” (As in, you can have the cake or the 
pie, but not both). What had become known as the 
field of “neural networks” all but disappeared.



First neural network winter is coming



• In 1982, interest in the field was renewed. John Hopfield of Caltech 
presented a paper to the National Academy of Sciences. His approach 
was to create more useful machines by using bidirectional lines. 
Previously, the connections between neurons was only one way.  

• In 1986, the problem was how to extend the Widrow-Hoff rule to 
multiple layers. Three independent groups of researchers, which 
included David E. Rumelhart, Geoffrey E. Hinton and Ronald J. 
Williams, came up with similar ideas which are now called back-
propagation networks because it distributes pattern recognition 
errors throughout the network. 

• From 1986 to mid 90’s new developments arised: convolutional 
neural networks (Y.LeCun), unsupervised learning (Y.Bengio), RBM 
(G.Hinton), etc. But, by this point new machine learning methods 
had begun to also emerge, and people were again beginning to be 
skeptical of neural nets since they seemed so intuition-based and 
since computers were still barely able to meet their computational 
needs.



Second neural network winter is coming



• With the ascent of Support Vector Machines and the failure of 
backpropagation, the early 2000s were a dark time for neural net 
research. 

• Then, what every researcher must dream of actually happened: 
G.Hinton, S.Osindero, and Y.W.Teh published a paper in 2006 that 
was seen as a breakthrough, a breakthrough significant enough to 
rekindle interest in neural nets: A fast learning algorithm for deep 
belief nets. 

• After that, following Moore’s law, computers got dozens of times 
faster (GPUs) since the slow days of the 90s, making learning with 
large datasets and many layers much more tractable. 



Google Trends

Neural Networks Reborn







Trainable classifier

Hand-engineered 
features

Raw Data

STANDARD MACHINE LEARNING

DECISION

Loss Function 
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Example



Trainable classifier 
+ 
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Raw Data
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Deep Learning
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Rich Deep 
Learning 

Ecosystem



• Neural Networks (NN) is a beautiful biologically-
inspired programming paradigm which enables a 
computer to learn from observational data. 

• Deep Learning (DL) is a powerful set of 
techniques (tricks?) for learning in neural networks. 

• NN and DL currently provide the best solutions to 
many problems in image recognition, speech 
recognition, and natural language processing.

Definitions



Basic learning setup with one function

Training data: a set of (x(m), y(m)
) pairs.

Learn a function fw : x ! y to predict on new inputs x.

1. Choose a model function family fw.

2. Optimize parameters w.



High capacity models
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• How to find the parameters of the function? 

• We can use optimization techniques (minimizing a 
function, the loss function, that measures the discrepancy 
between the outcomes of a model and the desired 
outcomes). 

• To optimize, we must compute the derivative of every 
parameter with respect to the loss function. 

• But we have (possibly) millions of parameters and the loss 
function is a (possibly) large composition of functions…



Automatic Differentiation
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SGD-based logistic regression
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1-Layer Net function model: f(x) = �(wT · x+ b)

Non linear function. F.e. sigmoid

x1 x2 x3

y

b

1

w1 w2 w3

Neural Networks



1-Layer Net function model: f(x) = �(wT · x+ b)

Training: 
1. Assume a Squared-Error (or Cross Entropy) Loss 
2. Initialize 
3. Compute 
4.  
5. Repeat steps 3-4 until some condition satisfied

w
rwLoss =

X

m

Error(m) ⇤ �0(wTx(m)) ⇤ xm

w ! w � �(rwLoss)

Loss(w) =
1

2

X

m

(�(wTx(m))� y(m))2

1-layer nets model linear hyperplanes. It is a trainable  
system but it is not powerful.

Neural Networks



Training a two layer by backpropagation
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Training a two layer by backpropagation

If f(x(m)) 6= y(m), back-propagate error and adjust weights {wij , wj}

1

2

For each sample, compute f(x(m)) = �(
P

j wj · �(
P

i wijx
(m)
i )).

wj

y

Adjust  
weights



y

h1 h2 h3

wij

hj

xi
x1 x2 x3 x4 Adjust  
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Training a two layer by backpropagation

All updates involve some scaled error from output * input feature.
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2-layer nets are universal function approximators (given 
infinite hidden nodes). It is a powerful system but when the 

number of hidden nodes increases it is not trainable.



Backpropagation

f(w, x) =
1

1 + e�(w0x0+w1x1+w2)



Backpropagation

We can structure our code in layers, 
where you can derive the local 

gradients, then chain the gradients 
during backpropagation. 

 



x1 x2 x3
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bw1 w2 w3

1

1-layer neural net model

Graphical Representation

f(x) = �(wT · x+ b)
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Input Layer 
(x1, x2, x3, x4)

Hidden Layer 
(h1, h2, h3, h4, h5, h6 h7)

Output Layer 
(y1, y2)

Weights W1

Weights W0

x1

h1

y1

W 0
1,1

W 1
1,1

2-layer neural net model
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j=1 xi ⇤W 0
i,j)
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Deep Models





Activation functions

• Squashes numbers to range [0,1]. 
• Historically popular since they have nice interpretation as 

a saturating “firing rate” of a neuron. 

2 BIG problems: 
• Saturated neurons “kill” the gradients. 
• Sigmoid outputs are not zero centered.



Activation functions

• Squashes numbers to range [-1,1]. 
• Zero centered. 

1 BIG problem: 
• Saturated neurons “kill” the gradients.



Activation functions

• Does not saturate. 
• Computationally efficient. 
• Fast convergence. 

1 small problem: 
• Dead ReLU (x < 0).



Activation functions

- Use ReLU. Be careful with your learning rates 
- Try out tanh but don’t expect much 
- Never use sigmoid 



Training

Step 1: Preprocess the data



Training

Step 2: Initialize well 

• Set weights to small random numbers. 
• Set biases to zero.



Training

Step 3: Use stochastic gradient descent. 



Strategies to build powerful decision functions

1

2

Given a dictionary of non linear decision functions g1, . . . , gn, we can build
a non linear decision function by combination or by composition:

Combination

Composition

f(x) = a1g1(x) + · · ·+ angn(x)

f(x) = g1(g2(. . . (gn(x)) . . . ))

Deep Learning is based on the composition of some  
differentiable functions that produce a trainable  

and powerful system.



Given same number of units, a deeper architecture 
is more  expressive than a shallow one.

1-layer nets model linear hyperplanes
2-layer nets are universal function approximators (given infinite hidden nodes)

3-layer nets are universal function approximators with fewer nodes/weights

A DNN with two hidden layers and a modest number of 
hidden units can sort N N-bit numbers.



Convolutional neural networks

LeNet, 1980



Convolutional neural networks

They are just neural networks but with local connectivity 
and shared weights.

Full connectivity: 32x32x3 weights 

Local connectivity: one neuron will connect to, e.g. 5x5x3 chunk 
and only have 5x5x3 weights.



Convolutional neural networks

Multiple neurons all looking at the same region of the input 
volume, stacked along depth.

They are just neural networks but with local connectivity 
and shared weights.



Convolutional neural networks

Input [32 x 32 x3],  30 neurons (bands) with receptive fields 5x5: 
=> Output volume: [32 x 32 x 30] (= 30720 neurons) 

Each neuron has 5*5*3 (=75) weights 
=> Number of weights in such layer: 30720 * 75 ~ 3 million



Convolutional neural networks

PARAMETER SHARING: lets not learn the same 
thing across all spatial locations - > 30 different  

(spatially invariant)  filters  
instead of 30 specific filters at each location.

Before: 
#weights in such layer: (32*32*30) * 75 = 3 million 

Now: (parameter sharing) 
#weights in the layer: 30 * 75 = 2250.



Convolutional neural networks



Convolutional neural networks

Sometimes it’s not a good idea to share the parameters



Recurrent neural layer model
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Variable-size inputs + sequences



Recurrent neural layer model
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Variable-size inputs + sequences



Recurrent neural layer model
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Variable-size inputs + sequences



Recurrent neural layer model
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Variable-size inputs + sequences
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Recurrent neural layer model

Encoder

Decoder

Encoder-Decoder

Bidirectional
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Recurrent neural layer model



But deep networks are hard to train….

Vanishing gradient problem:     may vanish after repeated 
multiplication.

�j





What changed since the 80’s?

• Computers were slow. So the neural networks of past were tiny. And 
tiny neural networks cannot achieve very high performance on 
anything. In other words, small neural networks are not powerful. 

• Datasets were small. So even if it was somehow magically possible 
to train LDNNs, there were no large datasets that had enough 
information to constrain their numerous parameters. So failure was 
inevitable. 

• Nobody knew how to train deep nets. The current best object 
recognition networks have between 20 and 100 successive layers of 
convolutions. A 2 layer neural network cannot do anything good on 
object recognition. Yet back in the day everyone was very sure that 
deep nets cannot be trained with SGD, since that would’ve been too 
good to be true!



Convolutional neural networks



Convolutional neural networks

Modern CNNs: 

- use filter sizes of 3x3 (maybe even 2x2 or 1x1!) 
- use pooling sizes of 2x2 (maybe even less - e.g. 
fractional pooling!) 
- stride 1 
- very deep



Learning

The success of Deep Learning hinges on a very fortunate 
fact: that well-tuned and carefully-initialized stochastic 
gradient descent (SGD) can train LDNNs on problems that 
occur in practice. It is not a trivial fact since the training error 
of a neural network as a function of its weights is highly 
non-convex.  

The problem of training neural networks is NP-hard, and in fact there 
exists a family of datasets such that the problem of finding the best 
neural network with three hidden units is NP-hard. And yet, SGD just 
solves it in practice. This is the main pillar of deep learning.



Learning

Climbing the correlation mountain 

We can say fairly confidently that successful LDNN training 
relies on the “easy” correlation in the data, which allows 
learning to bootstrap itself towards the more “complicated” 
correlations in the data. 

Neural networks start their learning process by noticing the 
most “blatant” correlations between the input and the 
output, and once they notice them they introduce several 
hidden units to detect them, which enables the neural 
network to see more complicated correlations.



Training deep networks: practical advice

Get the data: Make sure that you have a high-quality 
dataset of input-output examples that is large, 
representative, and has relatively clean labels. Learning is 
completely impossible without such a dataset.



Training deep networks: practical advice
Preprocess the data:  

• It is essential to center the data so that its mean is zero and so 
that the variance of each of its dimensions is one. Sometimes, 
when the input dimension varies by orders of magnitude, it is 
better to take the                    of that dimension.  

•  This is the case because the weights are updated by the 
formula: change in 
 
(w denotes the weights from layer x to layer y, and L is the loss 
function). If the average value of the x’s is large (say, 100), then the 
weight updates will be very large and correlated, which makes 
learning bad and slow. Keeping things zero-mean and with small 
variance simply makes everything work much better.

log(1 + x)

wij / xi(�L/�yi)



Training deep networks: practical advice

Use minibatches. Modern computers cannot be efficient 
if you process one training case at a time. It is vastly 
more efficient to train the network on minibatches of 
128 examples, because doing so will result in massively 
greater throughput.  
 
It would actually be nice to use minibatches of size 1, and they 
would probably result in improved performance and lower 
overfitting; but the benefit of doing so is outweighed the massive 
computational gains provided by minibatches. But don’t use very 
large minibatches because they tend to work less well and overfit 
more. So the practical recommendation is: use the smaller 
minibatch that runs efficiently on your machine.



Training deep networks: practical advice

Gradient normalization: Divide the gradient by 
minibatch size. This is a good idea because of the 
following pleasant property: you won’t need to change 
the learning rate (not too much, anyway), if you double 
the minibatch size (or halve it).



Training deep networks: practical advice

Learning rate schedule: Start with a normal-sized learning 
rate (LR) and reduce it towards the end. 

•  A typical value of the LR is 0.1.  
•  Use a validation set to decide when to lower the learning rate and 

when to stop training (e.g., when error on the validation set starts to 
increase). 

•  A practical suggestion for a learning rate schedule: if you see that you 
stopped making progress on the validation set, divide the LR by 2 (or 
by 5), and keep going. Eventually, the LR will become very small, at 
which point you will stop your training. 

•  Worry about the Learning Rate. One useful idea is to monitor the ratio 
between the update norm and the weight norm. This ratio should be 
at around 10-3. If it is much smaller then learning will probably be too 
slow, and if it is much larger then learning will be unstable and will 
probably fail.



Training deep networks: practical advice

Weight initialization. Worry about the random 
initialization of the weights at the start of learning.  

•  If you are lazy, it is usually enough to do something like 0.02 * 
randn(num_params).  

•  If it doesn’t work well (say your neural network architecture is 
unusual and/or very deep), then you should initialize each 
weight matrix with the init_scale / sqrt(layer_width) * randn. In 
this case init_scale should be set to 0.1 or 1, or something like 
that.



Fun story: researchers believed, for many years, that SGD 
cannot train deep neural networks from random 
initializations.  
  
Every time they would try it, it wouldn’t work. Embarrassingly, 
they did not succeed because they used the “small random 
weights” for the initialization, which works great for shallow 
nets but simply doesn’t work for deep nets at all. When the 
nets are deep, the many weight matrices all multiply each 
other, so the effect of a suboptimal scale is amplified.

Training deep networks: practical advice



Data augmentation: be creative, and find ways to 
algorithmically increase the number of training cases that are 
in your disposal.  
 
If you have images, then you should translate and rotate them; if 
you have speech, you should combine clean speech with all types 
of random noise; etc. Data augmentation is an art (unless you’re 
dealing with images). Use common sense.

Training deep networks: practical advice



Dropout. Dropout provides an easy way to improve 
performance. It’s trivial to implement and there’s little reason 
to not do it. 

Training deep networks: practical advice



Dropout. Dropout provides an easy way to improve 
performance. It’s trivial to implement and there’s little reason 
to not do it.  

Remember to tune the dropout probability, and to not forget to turn 
off Dropout and to multiply the weights by (namely by 1-dropout 
probability) at test time. Also, be sure to train the network for longer. 
Unlike normal training, where the validation error often starts 
increasing after prolonged training, dropout nets keep getting 
better and better the longer you train them. So be patient.

Training deep networks: practical advice



Ensembling. Train 10 neural networks and average their 
predictions. It’s a fairly trivial technique that results in easy, 
sizeable performance improvements.  

One may be mystified as to why averaging helps so much, but there is 
a simple reason for the effectiveness of averaging. Suppose that two 
classifiers have an error rate of 70%. Then, when they agree they are 
right. But when they disagree, one of them is often right, so now the 
average prediction will place much more weight on the correct 
answer. The effect will be especially strong whenever the network is 
confident when it’s right and unconfident when it’s wrong. 

Training deep networks: practical advice



If you mix all these ingredients you can…



If you mix all these ingredients you can…



If you mix all these ingredients you can…



If you mix all these ingredients you can…



If you mix all these ingredients you can…


