
Introduction to deep learning
Jordi Vitrià

Universitat de Barcelona

“Classical” applications of computer vision:
object classification, detection and segmentation… in controlled

environments.

From 2012 deep learning has paved the way for new applications:
navigation and mapping.

DeepFace (Facebook): Accuracy of 97.35%

New applications: face recognition.

http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Image Upscaling (Flipboard)

http://engineering.flipboard.com/2015/05/scaling-convnets/

New applications: Image Upscaling (Flipboard)

http://engineering.flipboard.com/2015/05/scaling-convnets/

BicubicOriginal

Model

New applications: Image Upscaling (Flipboard)

New applications: Non visual data prediction

What is Pulse?

Pulse is a score out of 100 points that measures how popular a photo is. Pulse is calculated by an
algorithm, which is unique to 500px and is based on votes (Likes & Favorites) on your photo from the

community. The Pulse algorithm was designed to promote daily exposure of new photographs and
photographers. It is not necessarily a measure of photograph's quality.

New applications: Automatic Image Captioning

http://blogs.technet.com/b/machinelearning/archive/2014/11/18/rapid-progress-in-automatic-image-captioning.aspx

 10

Why Deep Learning?

It’s powerful!

It’s funny! It’s not rocket
science!

• In 1943, neurophysiologist Warren McCulloch and
mathematician Walter Pitts wrote a paper on how neurons
might work. In order to describe how neurons in the brain
might work, they modeled a simple neural network using
electrical circuits.

• In 1949, Donald Hebb wrote The Organization of Behavior, a
work which pointed out the fact that neural pathways are
strengthened each time they are used, a concept
fundamentally essential to the ways in which humans learn. If
two nerves fire at the same time, he argued, the connection
between them is enhanced.

• In 1957 Frank Rosenblatt attempted to build a kind of
mechanical brain called the Perceptron, which was billed as
“a machine which senses, recognizes, remembers, and
responds like the human mind”.

• In 1962, Widrow & Hoff developed a learning
procedure that examines the value before the weight
adjusts it (i.e. 0 or 1) according to the rule: Weight
Change = (Pre-Weight line value) * (Error / (Number
of Inputs)). It is based on the idea that while one
active perceptron may have a big error, one can
adjust the weight values to distribute it across the
network, or at least to adjacent perceptrons.

• A critical book written in 1969 by Marvin Minsky
and his collaborator Seymour Papert showed that
Rosenblatt’s original system was painfully limited,
literally blind to some simple logical functions like
“exclusive-or” (As in, you can have the cake or the
pie, but not both). What had become known as the
field of “neural networks” all but disappeared.

First neural network winter is coming

• In 1982, interest in the field was renewed. John Hopfield of Caltech
presented a paper to the National Academy of Sciences. His approach
was to create more useful machines by using bidirectional lines.
Previously, the connections between neurons was only one way.

• In 1986, the problem was how to extend the Widrow-Hoff rule to
multiple layers. Three independent groups of researchers, which
included David E. Rumelhart, Geoffrey E. Hinton and Ronald J.
Williams, came up with similar ideas which are now called back-
propagation networks because it distributes pattern recognition
errors throughout the network.

• From 1986 to mid 90’s new developments arised: convolutional
neural networks (Y.LeCun), unsupervised learning (Y.Bengio), RBM
(G.Hinton), etc. But, by this point new machine learning methods
had begun to also emerge, and people were again beginning to be
skeptical of neural nets since they seemed so intuition-based and
since computers were still barely able to meet their computational
needs.

Second neural network winter is coming

• With the ascent of Support Vector Machines and the failure of
backpropagation, the early 2000s were a dark time for neural net
research.

• Then, what every researcher must dream of actually happened:
G.Hinton, S.Osindero, and Y.W.Teh published a paper in 2006 that
was seen as a breakthrough, a breakthrough significant enough to
rekindle interest in neural nets: A fast learning algorithm for deep
belief nets.

• After that, following Moore’s law, computers got dozens of times
faster (GPUs) since the slow days of the 90s, making learning with
large datasets and many layers much more tractable.

Google Trends

Neural Networks Reborn

Trainable classifier

Hand-engineered
features

Raw Data

STANDARD MACHINE LEARNING

DECISION

Loss Function
Batch Optimization

Feature Library
Custom Features A few classes +

Hinge Loss (SVM) +
Sequential Minimal
Optimization +
HOG +
Deformable Part
Models

Example

Trainable classifier
+

Trainable features

Raw Data

DEEP LEARNING

DECISION

Loss Function
Network Architecture

Stochastic Gradient Descend

Backpropagation + Tricks

Deep Learning

Architectures
(deeply cascaded

nonlinearities)

Automatic
Differentiation

GPUs

Big Data

SGD + Training
Tricks

Cheap  
Labeling

Tensorflow

Keras

Edward

Backward
-mode

Recurrent
CNN

VAE

GANImageNet

 23

Rich Deep
Learning

Ecosystem

• Neural Networks (NN) is a beautiful biologically-
inspired programming paradigm which enables a
computer to learn from observational data.

• Deep Learning (DL) is a powerful set of
techniques (tricks?) for learning in neural networks.

• NN and DL currently provide the best solutions to
many problems in image recognition, speech
recognition, and natural language processing.

Definitions

Basic learning setup with one function

Training data: a set of (x(m), y(m)
) pairs.

Learn a function fw : x ! y to predict on new inputs x.

1. Choose a model function family fw.

2. Optimize parameters w.

High capacity models

 26

• How to find the parameters of the function?

• We can use optimization techniques (minimizing a
function, the loss function, that measures the discrepancy
between the outcomes of a model and the desired
outcomes).

• To optimize, we must compute the derivative of every
parameter with respect to the loss function.

• But we have (possibly) millions of parameters and the loss
function is a (possibly) large composition of functions…

Automatic Differentiation

 27

SGD-based logistic regression

 28

1-Layer Net function model: f(x) = �(wT · x+ b)

Non linear function. F.e. sigmoid

x1 x2 x3

y

b

1

w1 w2 w3

Neural Networks

1-Layer Net function model: f(x) = �(wT · x+ b)

Training:
1. Assume a Squared-Error (or Cross Entropy) Loss
2. Initialize
3. Compute
4.
5. Repeat steps 3-4 until some condition satisfied

w
rwLoss =

X

m

Error(m) ⇤ �0(wTx(m)) ⇤ xm

w ! w � �(rwLoss)

Loss(w) =
1

2

X

m

(�(wTx(m))� y(m))2

1-layer nets model linear hyperplanes. It is a trainable
system but it is not powerful.

Neural Networks

Training a two layer by backpropagation

y

h1 h2 h3

wij

hj

xi
x1 x2 x3 x4

Adjust
weights

Predict

f(x) = �(
X

j

wj · hj) = �(
X

j

wj · �(
X

i

wijxi))

wj

y

y

h1 h2 h3

wij

hj

xi
x1 x2 x3 x4

Predict

Training a two layer by backpropagation

If f(x(m)) 6= y(m), back-propagate error and adjust weights {wij , wj}

1

2

For each sample, compute f(x(m)) = �(
P

j wj · �(
P

i wijx
(m)
i)).

wj

y

Adjust
weights

y

h1 h2 h3

wij

hj

xi
x1 x2 x3 x4 Adjust

weights

Predict

Training a two layer by backpropagation

All updates involve some scaled error from output * input feature.

�khj

�jxi

wj

y

2-layer nets are universal function approximators (given
infinite hidden nodes). It is a powerful system but when the

number of hidden nodes increases it is not trainable.

Backpropagation

f(w, x) =
1

1 + e�(w0x0+w1x1+w2)

Backpropagation

We can structure our code in layers,
where you can derive the local

gradients, then chain the gradients
during backpropagation.

x1 x2 x3

y

bw1 w2 w3

1

1-layer neural net model

Graphical Representation

f(x) = �(wT · x+ b)

 36

Input Layer
(x1, x2, x3, x4)

Hidden Layer
(h1, h2, h3, h4, h5, h6 h7)

Output Layer
(y1, y2)

Weights W1

Weights W0

x1

h1

y1

W 0
1,1

W 1
1,1

2-layer neural net model

yi = �(
P7

j=1 hi ⇤W 1
i,j)

hi = �(
P7

j=1 xi ⇤W 0
i,j)

 37

Deep Models

Activation functions

• Squashes numbers to range [0,1].
• Historically popular since they have nice interpretation as

a saturating “firing rate” of a neuron.

2 BIG problems:
• Saturated neurons “kill” the gradients.
• Sigmoid outputs are not zero centered.

Activation functions

• Squashes numbers to range [-1,1].
• Zero centered.

1 BIG problem:
• Saturated neurons “kill” the gradients.

Activation functions

• Does not saturate.
• Computationally efficient.
• Fast convergence.

1 small problem:
• Dead ReLU (x < 0).

Activation functions

- Use ReLU. Be careful with your learning rates
- Try out tanh but don’t expect much
- Never use sigmoid

Training

Step 1: Preprocess the data

Training

Step 2: Initialize well

• Set weights to small random numbers.
• Set biases to zero.

Training

Step 3: Use stochastic gradient descent.

Strategies to build powerful decision functions

1

2

Given a dictionary of non linear decision functions g1, . . . , gn, we can build
a non linear decision function by combination or by composition:

Combination

Composition

f(x) = a1g1(x) + · · ·+ angn(x)

f(x) = g1(g2(. . . (gn(x)) . . .))

Deep Learning is based on the composition of some
differentiable functions that produce a trainable

and powerful system.

Given same number of units, a deeper architecture
is more expressive than a shallow one.

1-layer nets model linear hyperplanes
2-layer nets are universal function approximators (given infinite hidden nodes)

3-layer nets are universal function approximators with fewer nodes/weights

A DNN with two hidden layers and a modest number of
hidden units can sort N N-bit numbers.

Convolutional neural networks

LeNet, 1980

Convolutional neural networks

They are just neural networks but with local connectivity
and shared weights.

Full connectivity: 32x32x3 weights

Local connectivity: one neuron will connect to, e.g. 5x5x3 chunk
and only have 5x5x3 weights.

Convolutional neural networks

Multiple neurons all looking at the same region of the input
volume, stacked along depth.

They are just neural networks but with local connectivity
and shared weights.

Convolutional neural networks

Input [32 x 32 x3], 30 neurons (bands) with receptive fields 5x5:
=> Output volume: [32 x 32 x 30] (= 30720 neurons)

Each neuron has 5*5*3 (=75) weights
=> Number of weights in such layer: 30720 * 75 ~ 3 million

Convolutional neural networks

PARAMETER SHARING: lets not learn the same
thing across all spatial locations - > 30 different

(spatially invariant) filters
instead of 30 specific filters at each location.

Before:
#weights in such layer: (32*32*30) * 75 = 3 million

Now: (parameter sharing)
#weights in the layer: 30 * 75 = 2250.

Convolutional neural networks

Convolutional neural networks

Sometimes it’s not a good idea to share the parameters

Recurrent neural layer model

 56

Variable-size inputs + sequences

Recurrent neural layer model

 57

Variable-size inputs + sequences

Recurrent neural layer model

 58

Variable-size inputs + sequences

Recurrent neural layer model

 59

Variable-size inputs + sequences

 60

Recurrent neural layer model

Encoder

Decoder

Encoder-Decoder

Bidirectional

 61

Recurrent neural layer model

But deep networks are hard to train….

Vanishing gradient problem: may vanish after repeated
multiplication.

�j

What changed since the 80’s?

• Computers were slow. So the neural networks of past were tiny. And
tiny neural networks cannot achieve very high performance on
anything. In other words, small neural networks are not powerful.

• Datasets were small. So even if it was somehow magically possible
to train LDNNs, there were no large datasets that had enough
information to constrain their numerous parameters. So failure was
inevitable.

• Nobody knew how to train deep nets. The current best object
recognition networks have between 20 and 100 successive layers of
convolutions. A 2 layer neural network cannot do anything good on
object recognition. Yet back in the day everyone was very sure that
deep nets cannot be trained with SGD, since that would’ve been too
good to be true!

Convolutional neural networks

Convolutional neural networks

Modern CNNs:

- use filter sizes of 3x3 (maybe even 2x2 or 1x1!)
- use pooling sizes of 2x2 (maybe even less - e.g.
fractional pooling!)
- stride 1
- very deep

Learning

The success of Deep Learning hinges on a very fortunate
fact: that well-tuned and carefully-initialized stochastic
gradient descent (SGD) can train LDNNs on problems that
occur in practice. It is not a trivial fact since the training error
of a neural network as a function of its weights is highly
non-convex.

The problem of training neural networks is NP-hard, and in fact there
exists a family of datasets such that the problem of finding the best
neural network with three hidden units is NP-hard. And yet, SGD just
solves it in practice. This is the main pillar of deep learning.

Learning

Climbing the correlation mountain

We can say fairly confidently that successful LDNN training
relies on the “easy” correlation in the data, which allows
learning to bootstrap itself towards the more “complicated”
correlations in the data.

Neural networks start their learning process by noticing the
most “blatant” correlations between the input and the
output, and once they notice them they introduce several
hidden units to detect them, which enables the neural
network to see more complicated correlations.

Training deep networks: practical advice

Get the data: Make sure that you have a high-quality
dataset of input-output examples that is large,
representative, and has relatively clean labels. Learning is
completely impossible without such a dataset.

Training deep networks: practical advice
Preprocess the data:

• It is essential to center the data so that its mean is zero and so
that the variance of each of its dimensions is one. Sometimes,
when the input dimension varies by orders of magnitude, it is
better to take the of that dimension.

• This is the case because the weights are updated by the
formula: change in

(w denotes the weights from layer x to layer y, and L is the loss
function). If the average value of the x’s is large (say, 100), then the
weight updates will be very large and correlated, which makes
learning bad and slow. Keeping things zero-mean and with small
variance simply makes everything work much better.

log(1 + x)

wij / xi(�L/�yi)

Training deep networks: practical advice

Use minibatches. Modern computers cannot be efficient
if you process one training case at a time. It is vastly
more efficient to train the network on minibatches of
128 examples, because doing so will result in massively
greater throughput.

It would actually be nice to use minibatches of size 1, and they
would probably result in improved performance and lower
overfitting; but the benefit of doing so is outweighed the massive
computational gains provided by minibatches. But don’t use very
large minibatches because they tend to work less well and overfit
more. So the practical recommendation is: use the smaller
minibatch that runs efficiently on your machine.

Training deep networks: practical advice

Gradient normalization: Divide the gradient by
minibatch size. This is a good idea because of the
following pleasant property: you won’t need to change
the learning rate (not too much, anyway), if you double
the minibatch size (or halve it).

Training deep networks: practical advice

Learning rate schedule: Start with a normal-sized learning
rate (LR) and reduce it towards the end.

• A typical value of the LR is 0.1.
• Use a validation set to decide when to lower the learning rate and

when to stop training (e.g., when error on the validation set starts to
increase).

• A practical suggestion for a learning rate schedule: if you see that you
stopped making progress on the validation set, divide the LR by 2 (or
by 5), and keep going. Eventually, the LR will become very small, at
which point you will stop your training.

• Worry about the Learning Rate. One useful idea is to monitor the ratio
between the update norm and the weight norm. This ratio should be
at around 10-3. If it is much smaller then learning will probably be too
slow, and if it is much larger then learning will be unstable and will
probably fail.

Training deep networks: practical advice

Weight initialization. Worry about the random
initialization of the weights at the start of learning.

• If you are lazy, it is usually enough to do something like 0.02 *
randn(num_params).

• If it doesn’t work well (say your neural network architecture is
unusual and/or very deep), then you should initialize each
weight matrix with the init_scale / sqrt(layer_width) * randn. In
this case init_scale should be set to 0.1 or 1, or something like
that.

Fun story: researchers believed, for many years, that SGD
cannot train deep neural networks from random
initializations.

Every time they would try it, it wouldn’t work. Embarrassingly,
they did not succeed because they used the “small random
weights” for the initialization, which works great for shallow
nets but simply doesn’t work for deep nets at all. When the
nets are deep, the many weight matrices all multiply each
other, so the effect of a suboptimal scale is amplified.

Training deep networks: practical advice

Data augmentation: be creative, and find ways to
algorithmically increase the number of training cases that are
in your disposal.

If you have images, then you should translate and rotate them; if
you have speech, you should combine clean speech with all types
of random noise; etc. Data augmentation is an art (unless you’re
dealing with images). Use common sense.

Training deep networks: practical advice

Dropout. Dropout provides an easy way to improve
performance. It’s trivial to implement and there’s little reason
to not do it.

Training deep networks: practical advice

Dropout. Dropout provides an easy way to improve
performance. It’s trivial to implement and there’s little reason
to not do it.

Remember to tune the dropout probability, and to not forget to turn
off Dropout and to multiply the weights by (namely by 1-dropout
probability) at test time. Also, be sure to train the network for longer.
Unlike normal training, where the validation error often starts
increasing after prolonged training, dropout nets keep getting
better and better the longer you train them. So be patient.

Training deep networks: practical advice

Ensembling. Train 10 neural networks and average their
predictions. It’s a fairly trivial technique that results in easy,
sizeable performance improvements.

One may be mystified as to why averaging helps so much, but there is
a simple reason for the effectiveness of averaging. Suppose that two
classifiers have an error rate of 70%. Then, when they agree they are
right. But when they disagree, one of them is often right, so now the
average prediction will place much more weight on the correct
answer. The effect will be especially strong whenever the network is
confident when it’s right and unconfident when it’s wrong.

Training deep networks: practical advice

If you mix all these ingredients you can…

If you mix all these ingredients you can…

If you mix all these ingredients you can…

If you mix all these ingredients you can…

If you mix all these ingredients you can…

