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Part Il:

Standard verification methods

What'’s a reliable probabilistic forecast
Resolution and sharpness of a
probabilistic forecast

Current skill of sub-seasonal prediction:
Conditional skill
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 comparing the model statistics ( mean climate,
variability associated with MJO, ENSO etc..) with
the real world statistics = model evaluation
(diagnostics)

How we evaluate
our predictions ?

e assessing to what extent predictions follows the
time evolution of past climate or past weather
events - verification

 For both evaluation and verification we need
some data that describe the true = verification
sample
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Representation of the “true”
Data for verification

Verification datais affected by uncertainties:
Instrument errors

Inconsistencies in time and location
Different method of assimilation

Analysis

Reanalysis

Other observationson GTS (WMO exchange network for observations)

National and regional networks

Processed observation products (e.g. OSTIA SST, GPCP)
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Evaluation of biases based on
30-yearperiod: 2-metre temp.
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Against ERA-Interim
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Negative trend Others Positive trend
Verdnica Torralbaet al 2017 EECOL I LE..
E n Vi ron. Res . Le t t . 1 2 1 1 4 O 1 9 Figure 4. Comparison of the (a) 10 m and (b) 850 hPa wind speed trends produced by ERA-I, JRA-55 and MERRA-2. Blues (Reds)

indicate agreement between the three reanalyses about the negative (positive) trends of 10 m wind speed for December—January—
February in the period of 1980-2015. Asterisk indicates that the trends are significant at the 95% confidence level: no asterisk indicates
that the trends are not significant, () indicates that only one of the reanalysis has significant trends, (%) informs that two reanalyses
have significant trends, and (#x*) indicates that the three reanalyses have significant trends. Grey areas indicate where the surface level
is higher than the 850 hPa level.
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(e.g. ERA-Interim, ERA-5, MERRA2, JRA-55, NOAA 20C, .....)

Use similar data assimilation system as the operational forecasts

Reprocess historical observations

Re-run the data assimilation over a long period with a fixed assimilation system

Key Strengths: (from https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables)

. Global data sets, consistent spatial and temporal resolution over 3 or more decades, hundreds of variables available; model resolution and biases have steadily improved

. Reanalyses incorporate millions of observations into a stable data assimilation system that would be nearly impossible for an individual to collect and analyze separately, enabling a
number of climate processes to be studied

. Reanalysis data sets are relatively straightforward to handle from a processing standpoint (although file sizes can be verylarge)

Key Limitations:

. Observational constraints, and therefore reanalysis reliability, can considerably vary depending on the location, time period, and variable considered
. The changing mix of observations, and biases in observations and models, can introduce spurious variability and trends into reanalysis output

. Diagnostic variables relating to the hydrological cycle, such as precipitation and evaporation, should be used with extreme caution
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It works for a single forecast (e.g. the ensemble mean)

Deterministic Verification:
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metrics: anomaly correlation, Root-mean-square error (RMSE), Mean error (bias), Anomalystandard deviation
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The definition of the root-mean-square forecast

error, RMSE, in terms of the values of the
forecast, f, and the analysis, a, is:

RMSE? = (f ~a)} =(f~c)l +(a—c)} ~2(f~c)fac) (A1)

The definition of the un-centred ACC (Wilks,
2006) is:

acco W —cla-c)
V(=) la—e) (A2)

Here the overbar indicates a regional or global
average and (f— c) and (a — ¢)” are the squared
standard deviations of the forecast anomalies
and analysis anomalies from the climate, c,
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Deterministic Verification:

It works for a single forecast (e.g. the ensemble mean)
metrics: anomaly correlation, Root-mean-square error (RMSE), Mean error ..
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Projection onto the NAO (Z500)
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Probabilistic Verification:
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Attributes of forecast quality:

The accuracy, level of agreement between forecast and observation, can be divided into:

Reliability - Forecast distribution represents distribution of observations— unbiased probabilities

Reliability can be improved by calibration —a reliable forecast might have no skill. Can | trust
probabilities?

Discrimination and resolution - the forecast ability to represent the sample events into subsets with different
frequency distribution.

Sharpness - is an attribute of the forecast alone and refers to the tendency to forecast extreme values. Sharp
forecasts are "useful" BUT don’t want sharp forecasts if not reliable. Implies unrealistic confidence.

& ECMWF
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o CAFE
Climate Advanced Forecasting
of sub-seasonal Extremes
Reliability Diagram

How often was the event (T >25° C) predicted with probability p? and how often such event was observed.
Joint distribution of forecast and obs.

how often (as a percentage) a forecast probability actually occurred.

100

\Perfect reliability

o OBS-Frequency

0 FC-Probability 100
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Climate Advanced Forecasting

over-confident model

Over- and under- confidence
reliability diagram
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Observed Frequency

Reliability Diagram
10

08

O
]

o
A

02

0.0.

00 02 04 0.6 08 1.0
Forecast Probability

<SS ECMWF

1.0

08

o
(-]

Observed Frequency
g
=9

02

00,
0.0 02

Reliability Diagram

04 06 08 10
Forecast Probability




This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No 813844

O ST ROCand
Discrimination:

To measure the ability of a forecast system to discriminate between occurrence and non-occurrence of an event,
one has to ask:

What distributions of probabilities have been predicted when the event occurred and when it did not occur?

Relative Operating Characteristic

The relative operating characteristic (ROC, also referred

to as receiver operating characteristic)
shows Hit rate versus False alarm rate for all .
probability thresholds. = )
e

N % 05 -
Close to upper left corner good discrimination g
Below diagonal poor discrimination 2 o e skill
The area under the ROCcurve is a useful summary -
measure. g o5 f

75,

ROC area >0.5 useful fct. i
ROC area =0.5 climatology 0 02 04 06 08 1

False Alarm Rate
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2-meter temperature in upper tercile - Day 12-18
ROC score Reliability diagram
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b Day 12-18
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CAFE
2015/2016 Real-time Forecast verification

Relative Operating Characteristic (ROC)
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Skill Scores (SS):

Is a comparative measure of the skill (using any metric) and tell us if a set
of forecasts is better than a reference set.

Reference (ref) set can be persistence, climatology, or any other forecast
SS=[score (fct)-score(ref)]/ [ score(perfect fct)-score(ref)]

For example for RMSE metric SS= 1-RMSE(fct)/RMSE(ref)

SS—> 1 (perfect forecast )
SS—> 0 (fct = ref)

< ECMWF
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CRPS measure the mean error
in probability space:

More detailson how compute
CRPS see Hersbach 2000

CRPSS=1-CRPS(fct)/CRPS(ref)CRP
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Verification of extremes:
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Single probabilistic forecasts for life-threating events cannot be verified!

The true probability distribution function is not known — only the single outcome

Life-threating events usually rare — return periods often >20 years —too small sample to do a
probabilistic verification

Life-threating events are usually a composite of sub-events and unique in horizontal and temporal
scale.

What can we do:

e Statistical verification of less extreme events
 Evaluate model climate of extremes

e Learn about important aspects from case studies

& ECMWF
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Skill for severe cold events

2m temperature weekly averages ( below the 10% of the model climate)

Week 3 Week 4 ROC area of T2m (<10%) over NH land
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Regional average ROC for EC over Europe during the period NDJFMA of 2008-2017.
The red forecasts with an MJO in the IC, blue forecasts with nho MJO

From Xiaoyun Liang et al. report 2019
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Verification results vary with region, season, climate drivers (MJO, ENSO .....)

Pooling samples can mask variations in forecast performance this is particularly
important for subseasonal and seasonal predictions

Stratify data into sub-samples (forecast with MJO active etc..) help to quantify the
effect of climate drivers on the skill.

BUT must have enough samples to give robust statistics!

& ECMWF



CAFE P ro ba b | | ISt IC S kl | | SCores — This project has received funding from the European Union’s
: » i handi i der th
© ==.onoiFma 1989-2008 e e

Reliability Diagram
Probability of 2-m temperature in the upper tercile
Day 19-25

1 1
N. Extratropics EUROPE
0.9 0.9
— 0.04 — 0.03
081 —— -0.06 2R - -0.09
0.7 1 0.7
0.6- 0.6 1 /
o) o)
0.5 So0.51
g 3
§0-4’ %om
0.3 0.3
0.2 0.2-
0.1 e
0 T T T T T T T T T 0
6 o1 02 03 04 05 06 07 08 09 & 0 01 02 03 04 05 06 07 08 09 1

forecast probability

s MJO in IC

forecast probability



eS.

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No 813844

VIJU 1MmMpdact On propaol

Climate Advanced Forecasting
of sub-seasonal Extremes

NAO-

NAO+

a)
1 T
f faruc-coi il Rt S8 S a2 N SRR SR S A 4
1

n

%)

0
3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30

Forecast Range (Days) Forecast Range (Days)
e OfF oot e OF —— O e x- ON

Small impact for NAO+ predictions
Significantly higher skill for NAO- forecasts with and MJO in the i.c.

<SS ECMWF .




This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No 813844

Climate Advanced Forecasting
of sub-seasonal Extremes

Key considerations:

Are the forecasts significantly better than a reference forecast? Does ensemble A
perform significantly better than ensemble B?
e Take into account sampling variability

e Significance levels and/or confidence intervals
e Non-parametric resampling methods (Monte Carlo, bootstrap)

Effects of observation errors

e Adds uncertainty to verification results
e True forecast skill unknown

e Extra dispersion of observed PDF

e Active area of research

& ECMWF
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Communicating
probabilistic
verification can be
challenging:
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Climate Advanced Forecasting
of sub-seasonal Extremes

Questions:

What is a chaotic system?

What is ensemble weather/climate predictions?

Is uncertaintyin a forecast due to a lack of knowledge?

What are the advantages of ensemble predictions?
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Teleconnections — linear regression
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T2m in a grid point
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Teleconnections - composites
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* List the type of verification data sets your are using
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* List the problems you have experienced

* How did you overcome the problems?
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Composites of MSLP 10 days after MJO in phase 3

Reanalysis

Model Windstorms more likely!
MJO Composite MSLO ERA Interim 1981 - 2010 season DJF Phase: 3, Lag:10 .
N. Fields: 240 MJO Composite MSLO CY41R2_coup 1981 - 2010 season DJF Phase: 3, Lag:10
N. Fields: 1946

See e.g Cassou, 2008
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Sensitivityto the mean bias is relatively small even at the extended range
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