

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EXCELENCIA SEVERO OCHOA

Climate services for clean energy

A. Soret, LI. Palma, C. Delgado, LI. Lledó, N. González-Reviriego, J. Ramon, F.J. Doblas-Reyes...

27/09/2022

CAFE FINAL CONFERENCE

Barcelona Supercomputing Center

 Research, develop and manage information technology and facilitate its application in society



50,000 Cores **100,8** TB main memory **3** PB disk storage

Earth Science Department

Environmental modelling and forecasting, with a particular focus on weather, climate and air quality

> Climate Prediction Modelling

Atmospheric Composition Modelling

Earth System

Services

Computational Earth Sciences

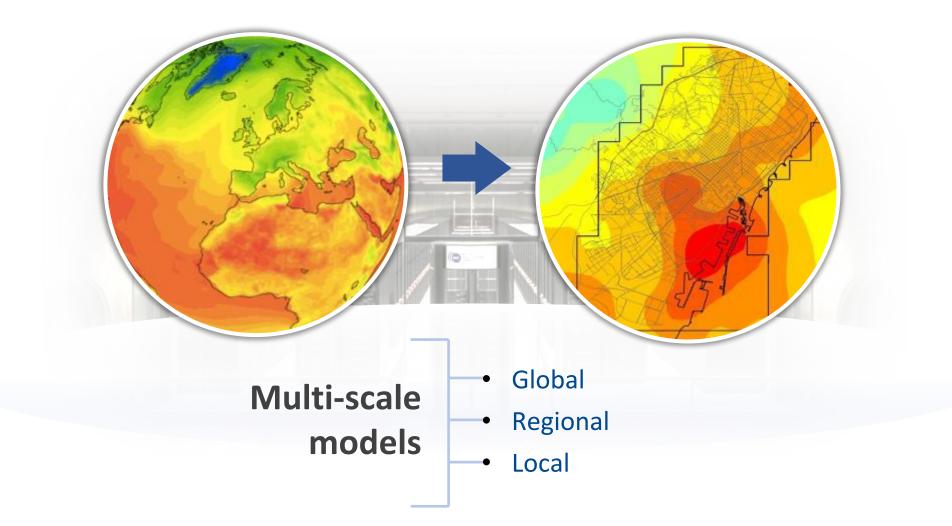
Director: Francisco Doblas-Reyes

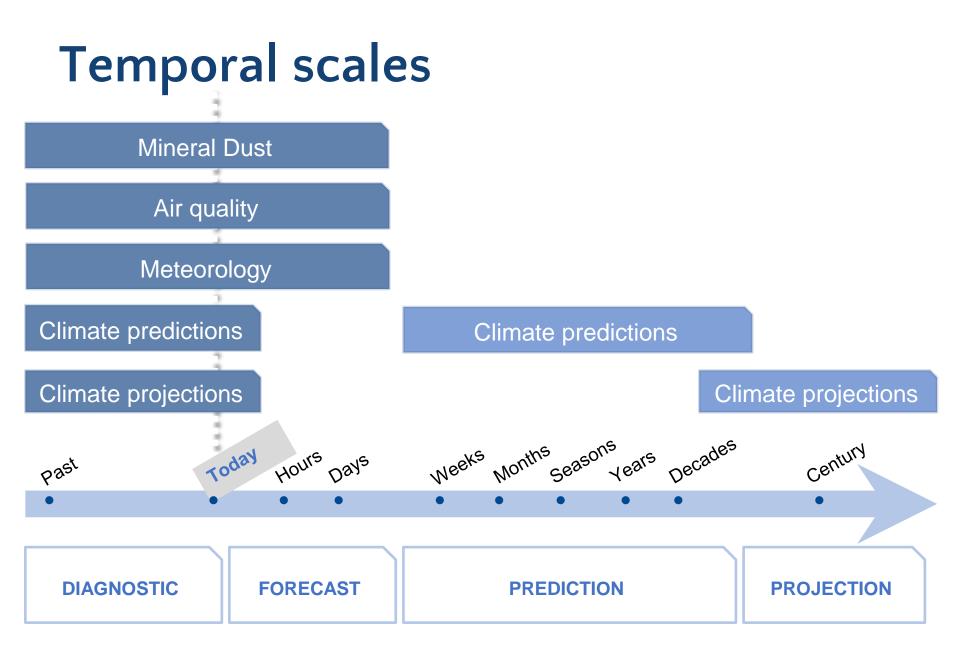
- ~ 120 people
- Leading: H2020 projects, ERC Consolidator

Grant and hosts an AXA Chair

Climate and Air quality modelling

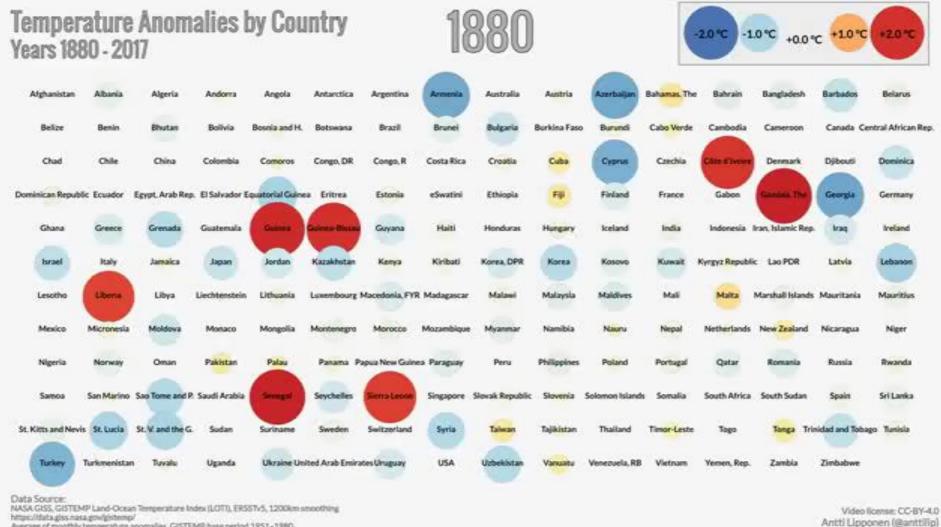
Spatial scales





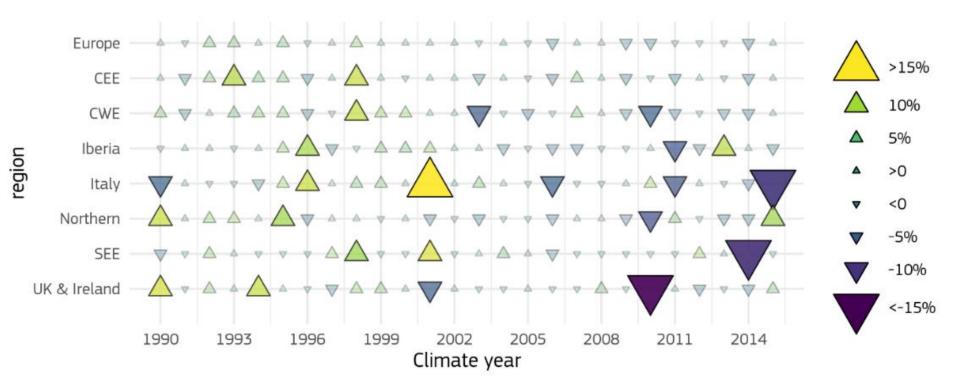
Weather forecast is a familiar concept ...

... and climate change too, but what about climate variability?

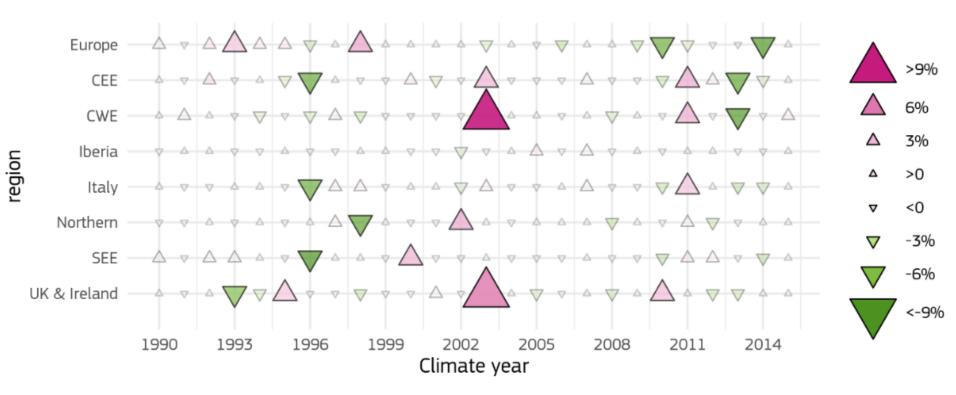


Average of monthly temperature anomalies, GISTEMP base period 1951-1980.

Link: https://youtu.be/PhbdyNnUliM

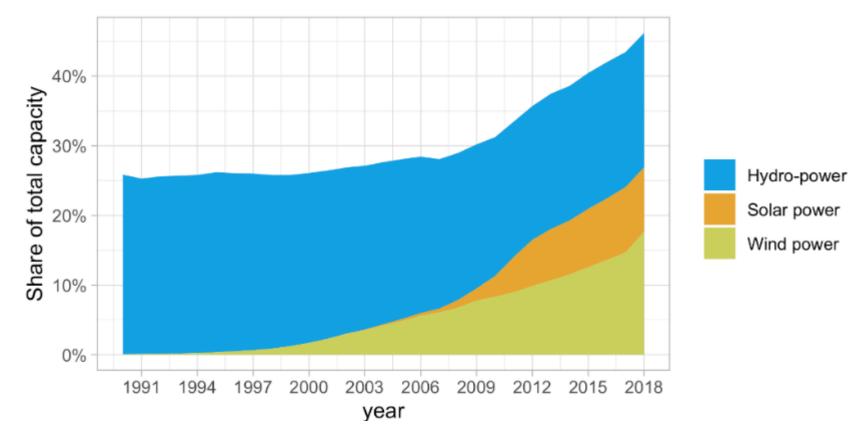


Annual variability (percentage deviation from the average) of onshore wind resources in the 26 climate years for the considered regions. Source: JRC, 2020



Annual variability (percentage deviation from the average) of solar resources in the 26 climate years for the considered regions. Source: JRC, 2020

Renewable energy is growing fast to decarbonize the energy system. -> Challenge: Energy security



Fraction of the hydro, solar and wind power capacities with respect to the total electricity generation capacities for the European countries. Source: EUROSTAT

Both energy supply and demand are strongly influenced by atmospheric conditions and its evolution over time in terms of climate variability and climate change.

 In the still weather, solar energy has increased by 10% to help cover the drop-off

By JOE PINKSTONE FOR MAILONLINE Y PUBLISHED: 15:48 BST, 18 July 2018 | UPDATED: 17:29 BST, 18 July 2018

Context and motivation

Energy sector routinely uses weather forecast up to several days. Beyond this time horizon, climatological data are used.

Met mast on Gwynt y Môr offshore wind farm (source: solar wheel)

Applications

Weather forecast	Climate predictions	Climate projections or		
	Sub-seasonal Seasonal	Decadal	multidecadal	
1-15 days	15 d-1 month 1-6 months	1-10 years	20-100 years	
Applications for wind/solar/l	nydro generation		Time	
Post-construction decisions	Post-construction decisions	Pre-construction decisions		
Energy producers:	Energy producers: Resource	Power plant developers: Site selection. Future		
commit energy sales for next day	management strategies	risks assessment.		
Grid operators: Market prices and	Energy traders: Resource effects on	Investors: Evaluate return on investments		
grid balance	markets	Policy-makers: Asses changes to energy mix		
Energy traders: Anticipate energy	Plant operators: Planning for	River-basin managers: understand changes to		
prices	maintenance works, especially offshore	better manage the river flow		
Plant operators: planning for	wind O&M			
cleaning and maintenance	Plant investors: anticipate cash flow,	\rightarrow		
<u> </u>	optimize return on investments	i the second		

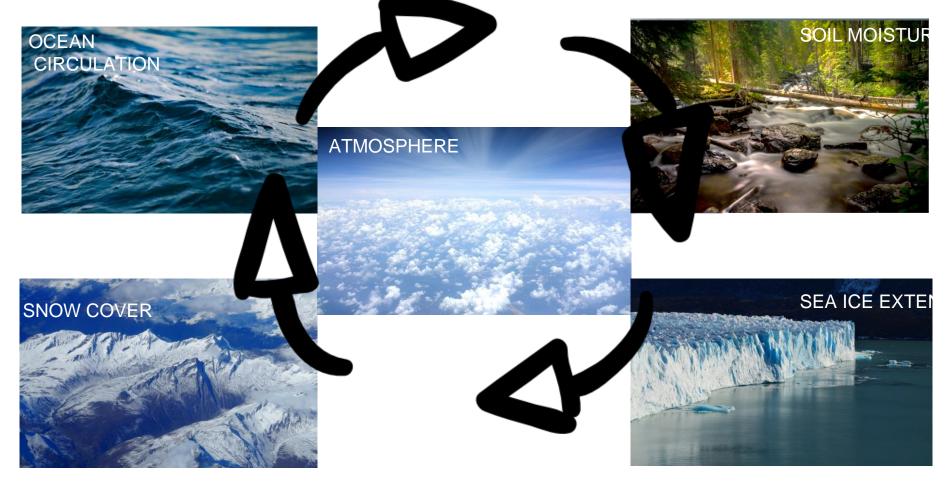
Applications for demand

Daily operation decisions Grid operators: Anticipate hot/cold days. Schedule power plants to reinforce supply. Energy traders: Anticipate energy prices. Mid-term planning Grid operators: Anticipate hotter/colder seasons Schedule power plants to reinforce supply. Energy traders: Anticipate energy prices.

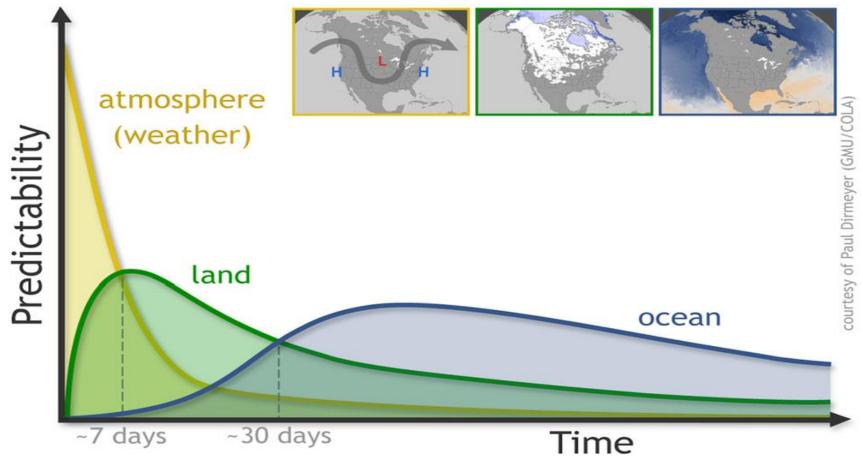
Long-term planning Grid operators: Anticipate addition of more capacity. Adaptation of transmission lines Policy-makers: Plan addition of more capacity. Understand changes to energy mix

Predictability

Why can we predict climate for the coming season if we cannot predict the weather next week? Slow components (sea surface temperature, soil moisture, etc.) force the atmosphere.



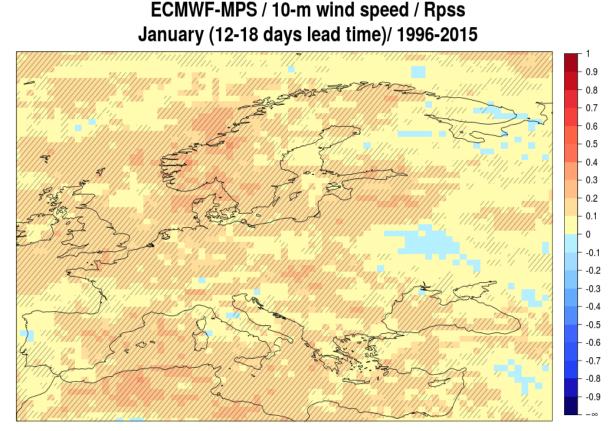
S2S Forecast range and skill



(Source: Mariotti et al. 2018)

S2S skill

A prediction has no value without an estimate of forecasting skill based on past performance

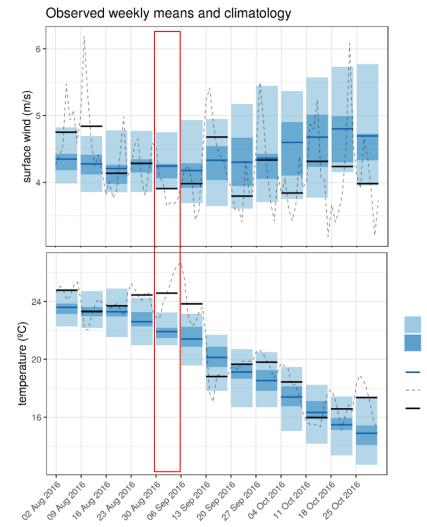


RPSS of 10-m wind speed for the Monthly Prediction System of January (1996-2015). Locations where the RPSS is significant (95%) are hatched.

Case study 3 Heat wave and wind drought in Spain - Sep 2016 Subseasonal forecasts

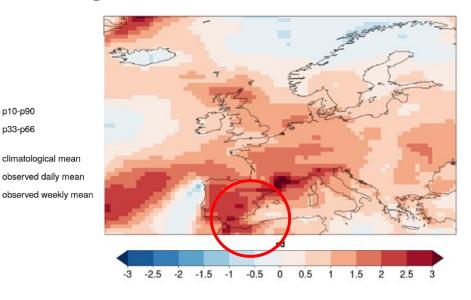
Heat wave and wind drought in Spain. Sep 2016

p10-p90 p33-p66



A heat wave and wind drought over Iberian Peninsula created a combination of:

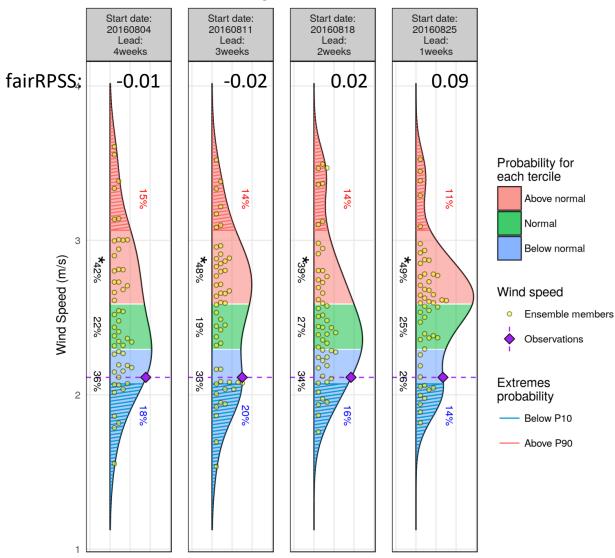
- large increase in electricity demand
- Iower than usual wind power generation



Surface wind and temperature anomalies for the week 30/08/2016-5/09/2016. ERA-Interim with respect to climatology (1981-2017)

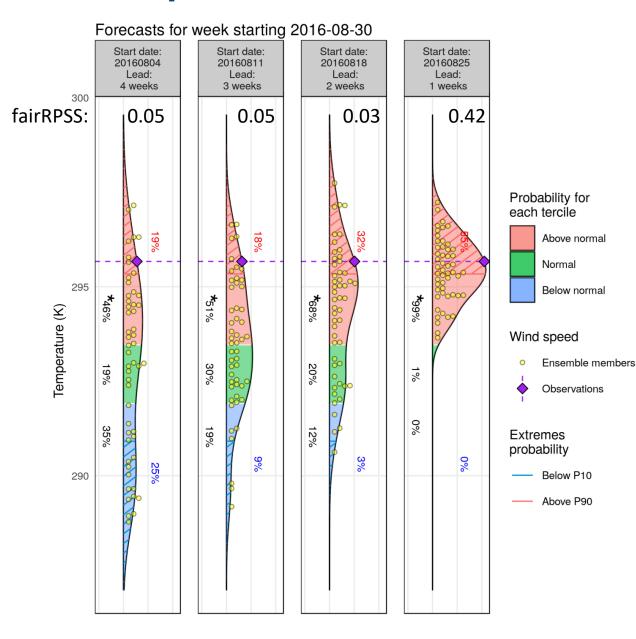
Wind speed forecasts

Forecasts for week starting 2016-08-30



System: ECMWF monthly prediction system Reanalysis: ERA-Interim Bias adjusted –calibrated Hindcast: 1996-2015 Lat= 40.5 N/Lon = 358.5 E

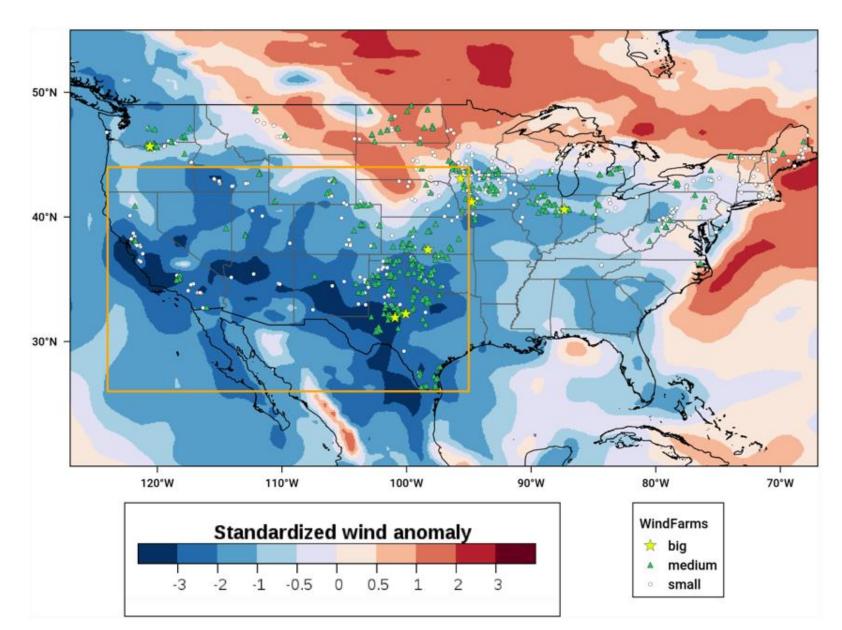
Temperature forecasts:



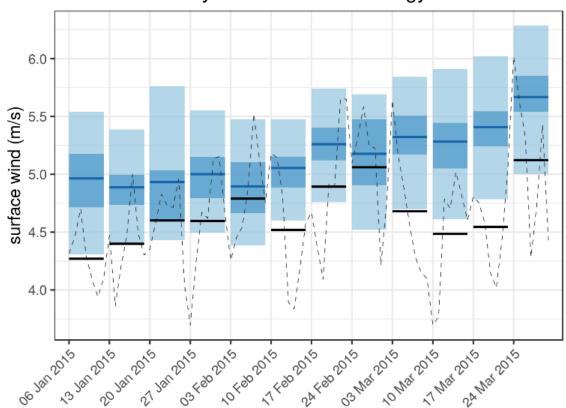
System: ECMWF monthly prediction system Reanalysis: ERA-Interim Bias adjusted –calibrated Hindcast: 1996-2015 Lat= 40.5 N/Lon = 358.5 E

Case study 6 US wind drought – JFM 2015 Seasonal forecast

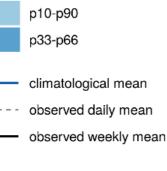
Wind anomaly Q1 2015



Widespread and extended in time

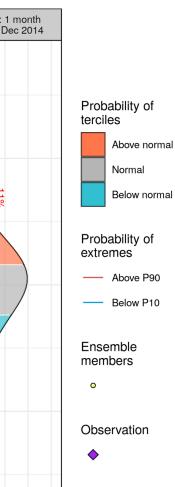


Observed weekly means and climatology



Fcsts available 3 to 1 months ahead

Seasonal forecasts for Jan-Mar 2015 Lead time: 3 months Lead time: 2 months Lead time: 1 month Start date: Oct 2014 Start date: Nov 2014 Start date: Dec 2014 4.5 11% 11% 8% 0 00 20% 24% 31% 0 Wind speed (m/s) 8 8800 00 8 % % 8⁰ 80 31% 33% 29% 0 000 0⁰00 8⁰0 80 0 *37% ***** 50% ***** 45% 0000 0 00 80 00 0 0 80 3.9 6% 2% 11% 00 Probabilty density (total area=1)



Associated Skill Scores

	Start Date			
	Oct	Nov	Dec	
RPSS	0.35	0.39	0.35	
BS P10	-0.07	-0.27	-0.16	
BS P90	0.1	0.04	0.07	
CRPSS	0.14	0.11	0.14	
EnsCorr	0.55	0.54	0.51	

System: ECMWF SEAS5 Reanalysis: ERA-Interim Bias adjustment: calibration Hindcast: 1993-2015

Event impacts

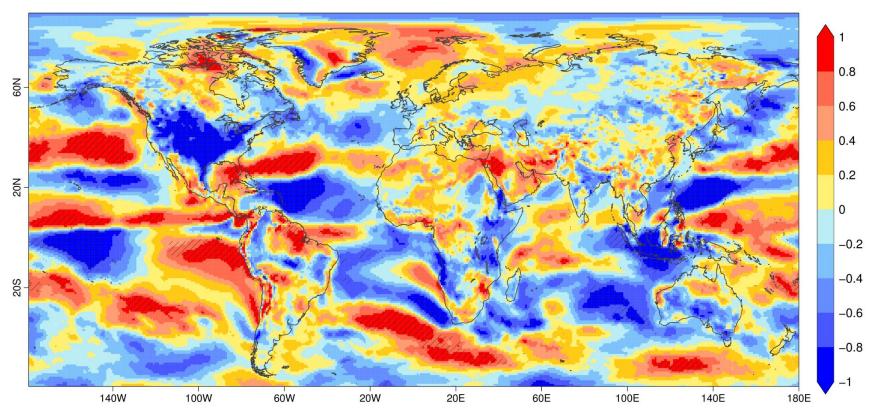
"US clean energy suffers from lack of wind" *Financial Times, September 2015.*

"El Niño Buffers U.S. Wind Power Dreams" *Wall Street Daily, September 2015.*

"El Niño blowing down wind projections in US" *Fierce Energy, July 2015.* "We never anticipated a drop-off in the wind resource as we have witnessed over the past six months" *David Crane, RNG, September 2015.*

NIÑO3.4 teleconnection

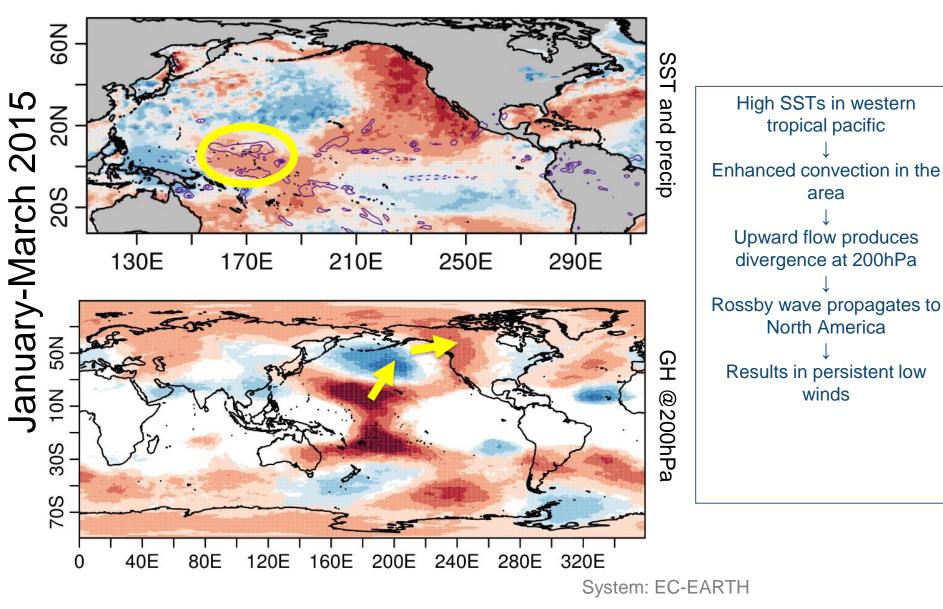
ERA-Interim / 10m wind speed / NIÑO3.4 positive minus neutral impact DJF / 1981-2015



Bias correction: none Hatched area:siginficant at 95% confidence level from a two tailed Student's t-test Mask: sea depth below 50m

Impact maps between NIÑO3.4 teleconnection index 10m wind speed from ERA-Interim reanalysis.

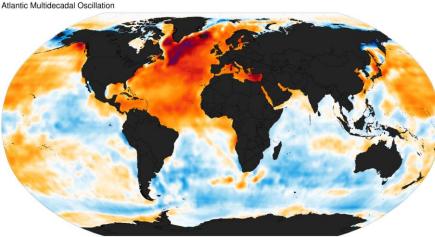
Causes



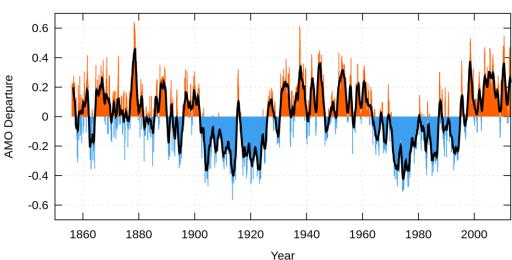
Lledó et al., 2018: Investigating the effects of Pacific sea surface temperatures on the wind drought of 2015 over the United States.

Between seasonal predictions and climate projections
Both initial value and boundary condition problems
Different sources of predictability

Different sources of predictability



Monthly values for the AMO index, 1856 -2013



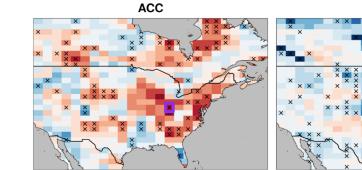
2.1

Table 2. Forecast systems that provide subdaily surface wind speed data contributing to the CMIP6/DCPP and their specifications (available simulations at the time of the study).

Forecast system	n° of DCPP members	Near-real time data	Spatial resolution	Month of initialisation	Reference
EC-Earth3-i1	10	No	0.7° x 0.7°	November	Bilbao et al. (2021)
EC-Earth3-i2	5	No	0.7° x 0.7°	November	Tian et al. (2021)
EC-Earth3-i4	10	Yes	0.7° x 0.7°	November	Bilbao et al. (2021)
IPSL-CM6A-LR	10	No	1.25° x 2.5°	January	Boucher et al. (2020)
MPI-ESM1.2-HR	10	No	0.9° x 0.9°	November	Müller et al. (2018)

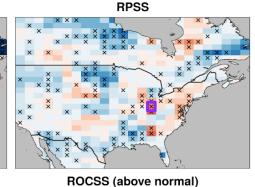
sfcWind - Multi-model vs ERA5 - Annual mean

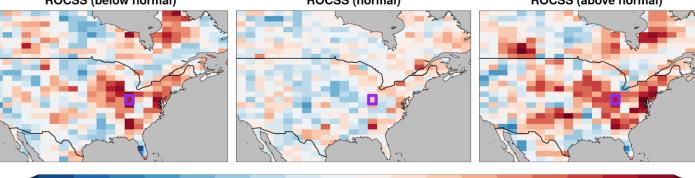
Start dates: 1960-2016 - Forecast period: years 1-5 - Reference period: 1981-2010 RMSSS



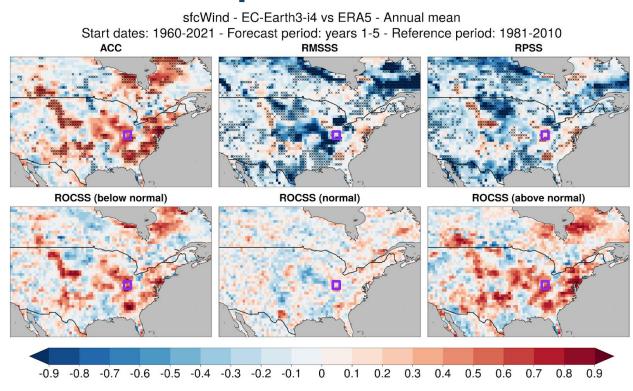
ROCSS (below normal)

ROCSS (normal)

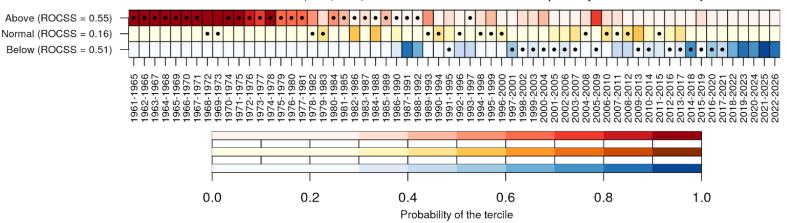




-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0

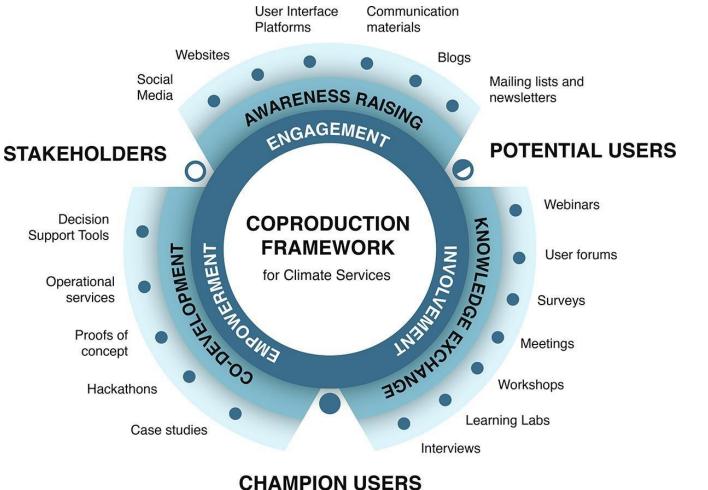


sfcWind forecast for USA-Indiana (39ºN,-85ºE) - Start dates: 1960-2021 - Forecast period: years 1-5 - Reference period: 1981-2010



Tailored indicators

Coproduction



Bojovic et al, 2021. https://doi.org/10.1016/j.gl oenvcha.2021.102271

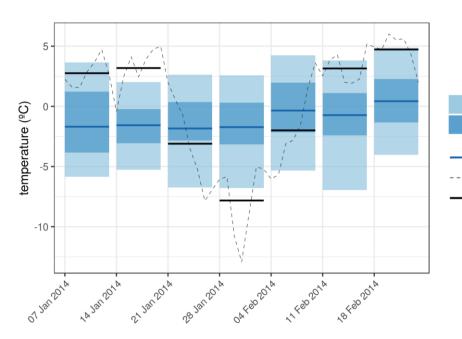
Case study 5 Iccing in Romania – Feb 2014 Subseasonal forecasts

Extreme event, icing. Romania 2014

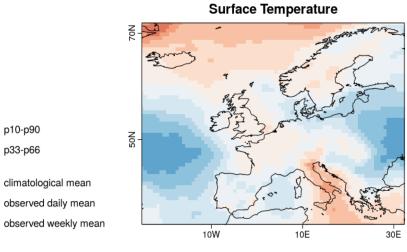
Extreme event, icing. Romania 2014

p10-p90

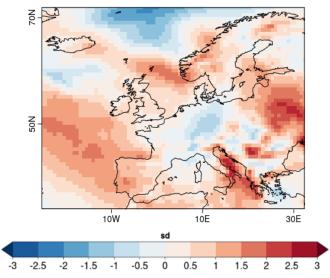
p33-p66



Temperature anomalies (at 27.5 oE, 46.5 oN during January and February 2014.). ERA-Interim with respect to climatology (1981-2017)

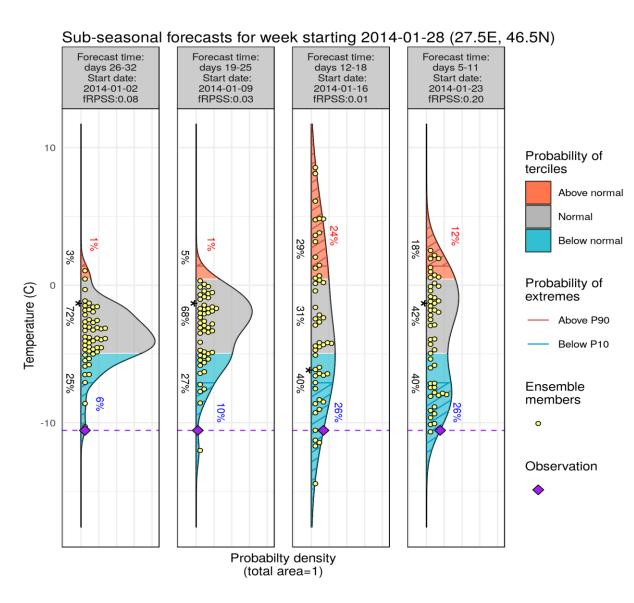


Surface Wind



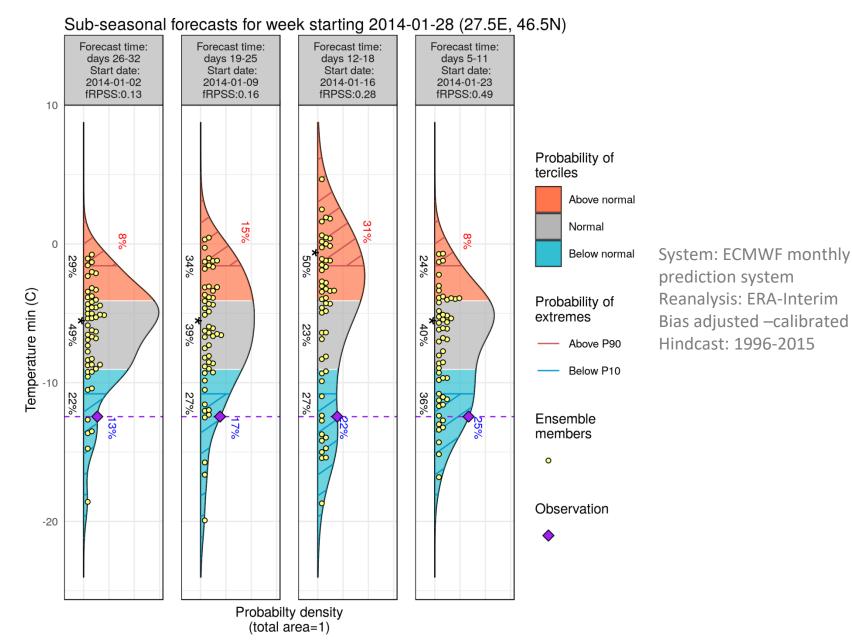
Surface wind and temperature anomalies. ERA-Interim with respect to climatology (1981-2017)

Temperature forecasts

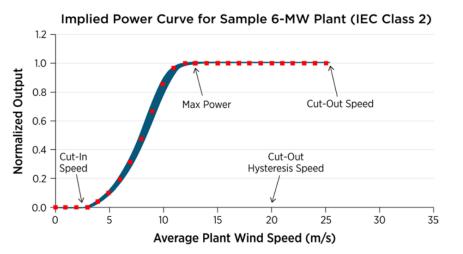


System: ECMWF monthly prediction system Reanalysis: ERA-Interim Bias adjusted –calibrated Hindcast: 1996-2015

Temp min forecasts

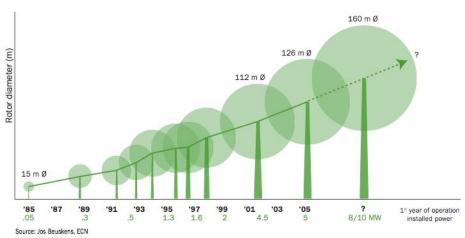


Capacity factor



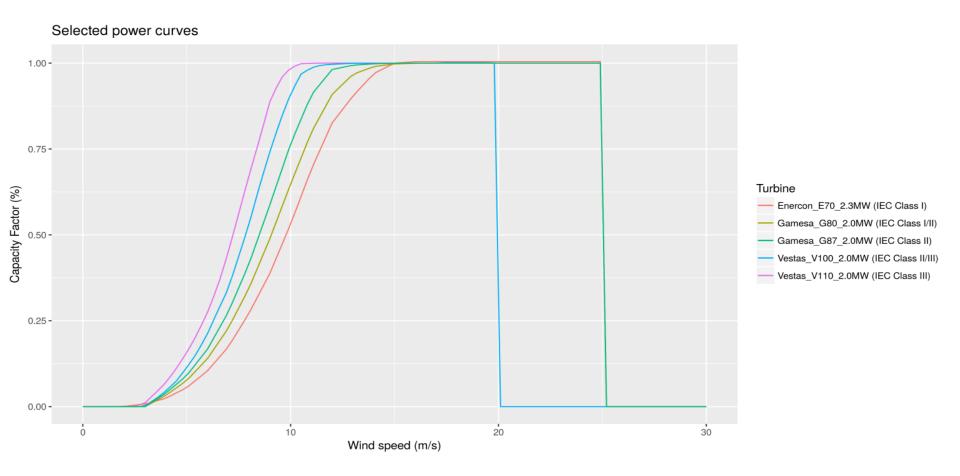
Aggregate power curve for a sample 6-MW wind power plant with theoretical power curve (red markers). Source: NREL

The capacity factor of a wind turbine is its average power output divided by its maximum power capability. On land, capacity factors range from 0.26 to 0.52. Offshore winds are generally stronger than on land, and capacity factors are higher on average, but offshore wind farms are more expensive to build and maintain.



The size of wind turbines at market introduction

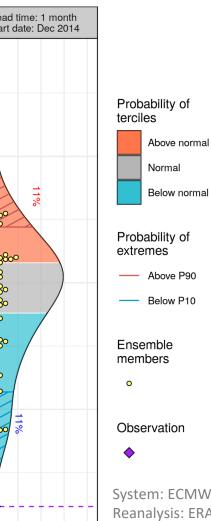
Capacity factor



The size of wind turbines at market introduction

Case study 6 US wind drought - JFM 2015

Seasonal forecasts for Jan-Mar 2015 Lead time: 3 months Lead time: 2 months Lead time: 1 month Start date: Oct 2014 Start date: Nov 2014 Start date: Dec 2014 4.5 11% 11% 8% 0 00 20% 24% 31% 0 Wind speed (m/s) 8 8800 00 8 80 80 8⁰ 80 31% 29% 33% 0 000 0⁰00 8⁰0 80 0 ***** 45% *37% *****50% 0⁰00 0 80 00 00 0 0 80 3.9 6% 2% 11% 00 Probabilty density (total area=1)



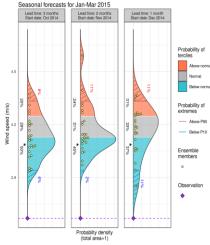
Associated Skill Scores

	Start Date		
	Oct	Nov	Dec
RPSS	0.35	0.39	0.35
BS P10	-0.07	-0.27	-0.16
BS P90	0.1	0.04	0.07
CRPSS	0.14	0.11	0.14
EnsCorr	0.55	0.54	0.51

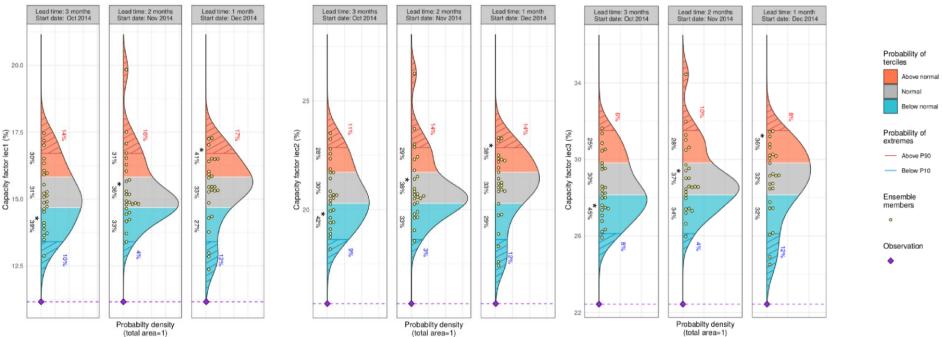
Observation

System: ECMWF SEAS5 Reanalysis: ERA-Interim Bias adjustment: calibration Hindcast: 1993-2015

Case study 6 US wind drought - JFM 2015

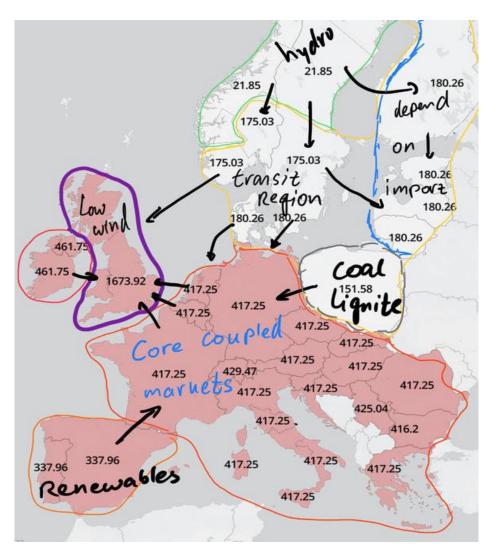


Seasonal forecasts for Jan-Mar 2015



Economic assessment

Economic assessment



Day ahead prices for 16/12/2021. Large differences across the continent, with a core region around €420. UK prices are the highest in Europe due to low wind energy production, while Iberian system prices are the lowest due to high wind resources (source: EnAppSys).

Decision maps of weather and climate dependent

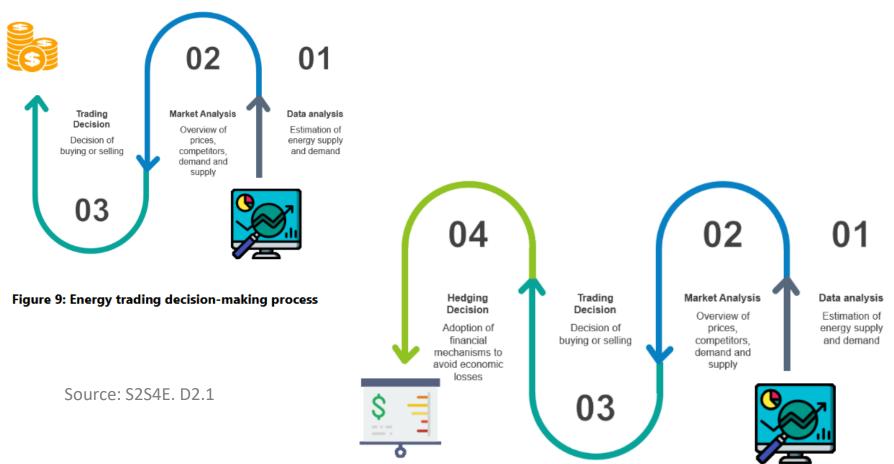
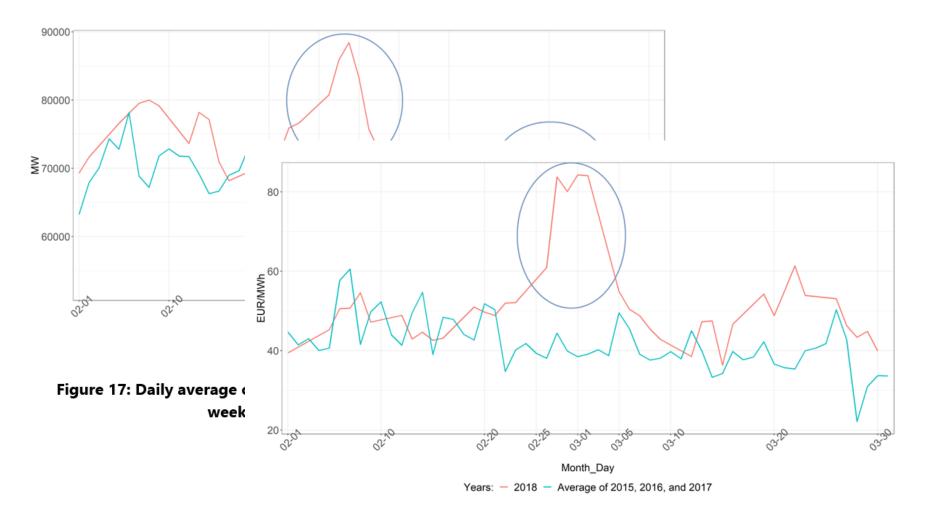
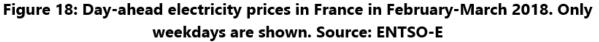


Figure 10: Hedging decision-making process

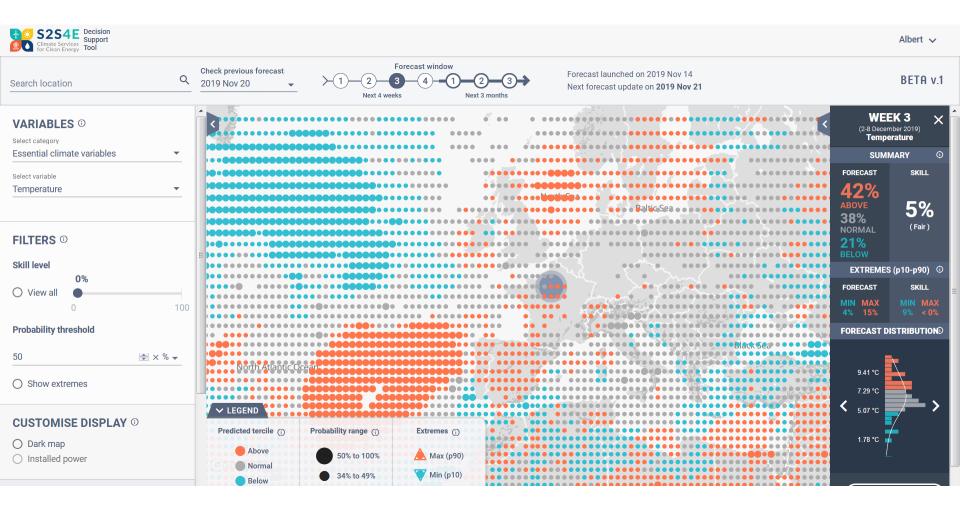
Cold spell France 2018





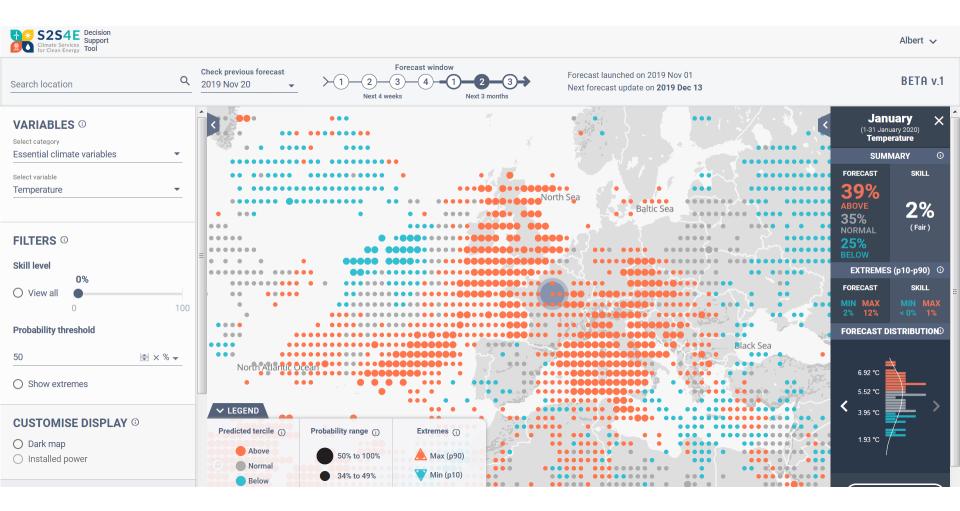
Codevelopment of a decission support tool

S2S4E DST



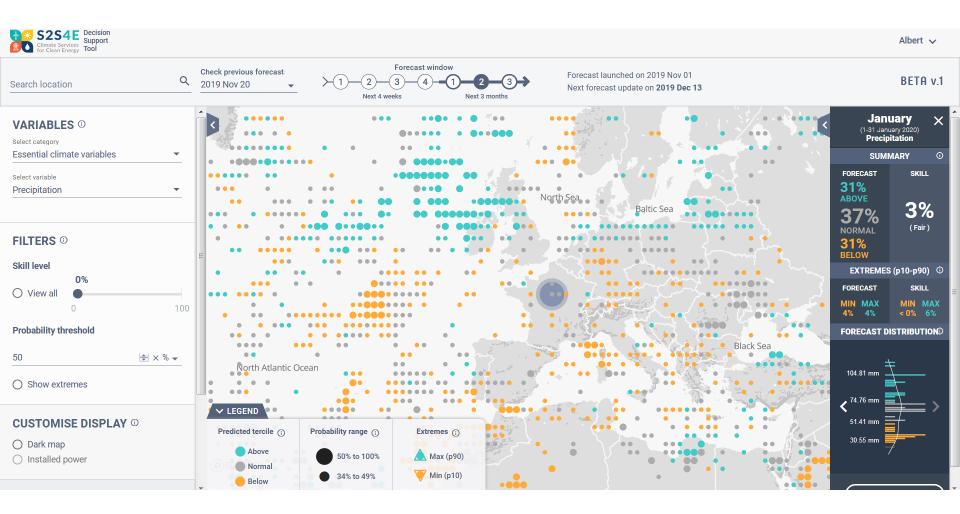
https://s2s4e.eu/dst

S2S4E DST



https://s2s4e.eu/dst

S2S4E DST



https://s2s4e.eu/dst

Final remarks

- Climate prediction systems have improved in the last decade demonstrating that probabilistic forecasting can inform better decision making at some temporal scales and regions
- Alongside the model development process, climate predictions need to be evaluated on past years to provide robust information before making decisions
- Tailored service helpful for several applications
- Interdisciplinary groups enhance the interaction with users to co-develop a service

Future work:

- Seamless prediction
- Take advantage of AI techniques

Thanks!

albert.soret@bsc.es