

The Sub-seasonal to Seasonal Prediction Project (S2S) and the prediction of extreme events

Frédéric Vitart, ECMWF

Index

1. Introduction:

- WWRP/WCRP S2S project
- S2S predictability
- S2S Database
- 2. S2S prediction of extreme events
- 4. Current limitations in S2S prediction
- 5. Conclusions

The WWRP/WCRP S2S project

The WWRP/WCRP S2S project 2013-2023

- Improve forecast skill and understanding on the sub-seasonal to seasonal timescale with special emphasis on high-impact weather events
- Promote the initiative's uptake by operational centres and exploitation by the applications community
- Capitalize on the expertise of the weather and climate research communities to address issues of importance to the Global Frame- work for Climate Services
- The S2S project started 2013 and is now in its second phase (2019-2023)
- International Coordination Office hosted by APCC.
- Contribution to S2S trust fund from Australia, Canada, UK and Germany.

The project focuses on the forecast range between 2 weeks and a season.

RESEARCH IMPCOntentiairson PLAN Frédéric Vitart (ECMWF) Andrew Robertson (IRI)

World Meteorological Organization Weather - Climate - Water

The WWRP/WCRP S2S project

S2S Phase I: 2013-2018

S2S Phase II: 2019–2023

Sub-seasonal to seasonal predictability

Atmospheric Predictability

Predictability of the Second Kind (Lorenz, 1975)

S2S sources of predictability

S2S main sources of predictability include:

- Madden Julian Oscillation
- Soil Moisture
- Stratospheric Initial conditions
- Rossby waves
- SSTs/Sea-ice
- ≻Aerosols? ...

Mariotti et al., 2019

The Madden Julian Oscillation

MJO 8 phases

Gottschalk, 2014

MJO Impacts

JFM surface wind anomalies over Europe

From L. Lledo

Weak stratospheric vortex events

Jan 2021 weak vortex event

L'Heureux 2021

Surface temperature anomalies in degrees Celsius for (left) the 30 days following all identified SSWs in the NCEP-NCAR reanalysis record from 1958-2013. From <u>Butler et al. 2017</u>

S2S prediction is challenging

Forecast skill is not constant in time. It depends strongly on the occurrence of sources of predictability: "windows of opportunity for forecast skill" (e.g. strong MJO, weak vortex event...)

Prediction skill of the 1000 hPa Northern Annular Mode for week 3 in the S2S models

• For most models, skill is higher following weak vortex conditions.

• Similar results are found following strong vortex conditions.

Domeisen et al. (2019)

Interactions between sources of predictability

ENSO Modulation of MJO teleconnections

- QBO MJO
- MJO SSW
- MJO-NAO
- MJO ENSO
- ENSO– MJO Teleconnection
- Decadal variability (PDO, AMO?)
- Global Warming

How do S2S models represent these sources of predictability and their interactions?

Lee et al. 2019

The WWRP/WCRP S2S Database

The WWRP/WCRP S2S database

- Daily 3-week behind real-time forecasts since January 2015 + re-forecasts
- 12 models currently available (2 new models soon: IMD/NASA)
- Same grid (1.5 degree) / GRIB2 format (netcdf converter available)
- About 80 variables available, including 3D variables on 10 pressure levels and a few ocean sub-surface variables have been recently added.
- Hosted at ECMWF, CMA and IRI

Links to data portals available at www.s2sprediction.net

S2S database models

	Forecasts				Hindcasts			
	Time- range	Resol.	Ens. Size	Freq.	Hcsts	Hcst length	Hcst Freq	Hcst Size
ECMWF	D 0-46	Tco639/319L91	51	2/week	On the fly	Past 20y	2/weekly	П
UKMO	D 0-60	N216L85	4	daily	On the fly	1993-2015	4/month	7
NCEP	D 0-44	N126L64	4	4/daily	Fix	1999-2010	4/daily	I
ECCC	D 0-32	~39 km 85 levels	21	weekly	On the fly	2001-2020	weekly	4
ВоМ	D 0-60	T47L17	33	2/weekly	Fix	1981-2013	6/month	33
JMA	D 0-34	40/55km I 28 levels	50	weekly	Fix	1991-2020	2/month	13
КМА	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
СМА	D 0-60	T266L56	4	2/week	On the fly	Past 15y	2/week	4
CNRM	D 0-47	T359L91	25	weekly	Fix	1993-2017	weekly	10
CNR- ISAC	D 0-32	0.75×0.56 L54	40	weekly	Fix	1981-2010	6/month	5
HMCR	D 0-63	1.1×1.4 L28	20	weekly	Fix	1990-2015	weekly	10
IAP-CAS	D0-65	C96L32	16	daily	Fix	1999-2018	daily	4

S2S database models

Models	Ocean Coupling	Active Sea Ice
ECMWF	YES	YES
UKMO	YES	YES
NCEP	YES	YES
ECCC	YES	YES
ВоМ	YES	YES
JMA	NO	NO
KMA	YES	YES
CMA	YES	YES
Met.Fr	YES	YES
ISAC-CNR	NO	NO
HMCR	NO	NO

The WWRP/WCRP S2S Database

user requests

Number of active users

ECMWF server

At least one active user

Archive size 200 TBs Number of active users 1776 (ECMWF) Delivered volume: 1.3 PBs Publications: > 270

S2S prediction of Extreme Events

S2S prediction of extreme events

1. Prediction of large-scale, long lasting events (> 1 week):

- 1. Heat/cold waves
- 2. Droughts
- 3. Large Flooding

Initial condition problem

2. Prediction of statistics of small scale events, for example:

- 1. Tropical cyclones
- 2. Flash floods
- 3. Tornadoes

Predictability comes from large-scale conditions (MJO/ENSO/SSW/SSTs.....)

Predicting extreme events: Heat Wave S2S prediction

Russian Heat Wave July-August 2010

- Worst heat wave on record over the past 33 years (Hoag, Nature 2014)
- Estimated 55,000 deaths
- Wildfires, smoke

ERA interim 2mtm anomalies 1-7 August 2010

Russian Heat Wave July-August 2010

WEEK1: time evolution of heat wave well predicted WEEK2 and 3: Onset and decay predicted one week too late Timing of maximum well predicted

2mtm anomalies over Russia – ECMWF reforecasts 1-7 August 2010

Investigating N. American Heat wave of June 2021

Two processes for the predictability of this heat wave:

-

- an upper tropospheric wave train associated with the boreal summer intraseasonal oscillation in Southeast Asia
- an anomalous North Pacific atmospheric river leading to high moisture conditions.

Lin, et al, GRL 2021; Mo et al, Nature comm. 2022

Advances in the subseasonal prediction of extreme events: Relevant case studies across the globe (Domeisen et al. 2022, BAMS)

Heat wave prediction

Week 3

Predicting skill associated with the Euro-Atlantic Regimes

- NAO+ and NAOare more predictable than Blockings and Atlantic Ridge.
- The predictability of NAO is about 3 weeks

 Predictability of Blockings and Atlantic Ridge is about 2 weeks

Predicting skill associated with the Euro-Atlantic Regimes:

Ferranti et al, 2018

Relative Operating Characteristics (ROC) score

Decile Probabilities – 19 September 2022 ECMWF real-time forecasts **Day 12-18**

Probability of 2mtm in upper decile

Forecast

ROC score for upper decile

ROC score for lower decile

Persistence of previous week

Extreme Forecast Index

2m temp Extreme Forecast Index

Forecast range:12-18days verifying 8-14 August 2016

NCEP

JMA

UKMO

http://www.ecmwf.int/en/research/projects/s2s/charts/s2s/

EFI skill assessment

Preliminary results based on ECMWF system:

Predicting statistics of extreme events: Tropical cyclone S2S prediction

Modulation of tropical cyclone density anomaly by MJO

Vitart and Robertson, 2018

MJO prediction Skill

MJO Skill in S2S database

MJO Intrinsic predictability

S2S models have skill to predict the evolution of the MJO up to 4 weeks in advance, but prediction skill still far from intrinsic predictablity

Tropical cyclones seasonal cycle

Lee et al, 2021

Tropical cyclones forecast skill

Lee et al, 2020

Tropical cyclone S2S prediction

Tropical cyclone YASI (26 January–4 February 2011)

Prediction of tropical cyclones at different time ranges from ECMWF seasonal and ensemble forecasting systems.

Current limitations in S2S prediction

Errors in the Representation of the MJO in S2S models

MJO Amplitude error relative to ERA Interim

MJO Phase error relative to ERA Interim

MJO in models is generally too slow and too weak. Ensemble forecasts are overconfident

Maritime Continent Barrier

Percentage of MJO events dying while crossing the MC

Impact of the MJO on the N. Extratropics

NAO Index: mean=0, std=1.02

3 pentads after MJO in phase 3

EI 0.48

BoM 0.15

CNRM 0.15

<-40m

0 - 10

CMA 0.14

UKMO 0.29

-40m - -30

10 - 20

JMA 0.22

-30m - -20

20 - 30

NCEP 0.32

ECCC 0.21

-20m - -10

30 - 40

ISAC 0.25

ECMWF 0.31

-10m - 0

>40m

S2S models simulate well the MJO teleconnection patterns but underestimate the amplitude of the MJO teleconnections.

Composites of T2m anomaly 11-15 days after the MJO in phase 7

Stan et al. (2021, BAMS)

SSW predictability

Prediction of SSW events

SSW teleconnections

Forecast skill. Are we filling the gap?

90 80 70 60 50 30 1981 1989 1991 1993 1995 1997 1999 2001 2003 2005 1083 1085 1097 2007 2009 2011 2013 2015 Day 3 NHem Day 5 NHem Day 7 NHem Day 10 NHen Day 3 SHem Day 5 SHem Day 7 SHem Day 10 SHen

Weather forecasting

Toth and Buizza, 2018 Incremental Improvement => "quite revolution" Seasonal forecasting

No Clear improvement over past 20 years

Sub-seasonal forecasting

Week 3 2m temp over N. Extratropics

Extended range: evaluation of re-forecasts

Rapid progress!

S2S AI/ML Competition

-02

- 0.0

-0.2

-0.10

- 0.05

- 0.00

-0.05

-0.10

-0.15

S2S Real-Time Pilot Project

Real-time S2S data access for climate services co-development projects

Sectors:

Water

Energy

Health

Agriculture/

reduction

Countries/regions:

Bangladesh

Guatemala

Columbia

Ghana

Kenya

Nigeria

Europe

Global

USA

Singapore

Asia & Pacific

Senegal

Ethiopia

food security Disaster risk

The S2S Real Time Pilot Initiative

- Started November 2019 & will continue until end October 2022 (includes 1-vear extension recently approved)
- Goals:
 - Identify what is needed to make S2S forecasts usable. how this varies by sector/ organisation/experience
 - Understand how projects engage with users, how this relates to pull-through/ demand
 - Develop understanding of the S2S forecast value chain & the needs for end-to-end user applications
 - Development of best practice quidelines and/or recommendations to enhance pull-through & sustainability

16 co-development projects

Approach

 3 sets of questionnaires: April/May 2020, Winter 2020/2021, Autumn 2021

Approach

- 16 co-development projects
- 3 sets of questionnaires:
- Planned RTP virtual workshop 14-18 Nov 2022

S2S Real-Time Pilot Project

Real-time S2S data access for climate services co-development projects

Disaster risk reduction in Southeast Asia S2S Real Time Pilot

Thea Turkington¹, Raizan Rahmat¹, Ryan Kang¹, Wee Leng Tan¹, Keith Paolo Landicho², Lawrence Anthony Dimailig², G. Srinivasan³, Laura Hendy⁴

1: **ASMC** (ASEAN <u>Specialised</u> Meteorological Centre), 2. The AHA Centre, 3. **RIMES** (Regional Integrated Multi-Hazard Early Warning System for Africa and Asia), 4. **UN ESCAP** (United Nations Economic and Social Commission for Asia and the Pacific).

S2S Forecasts tailored to ASEAN Centre for Humanitarian Action needs: Exceedance of weekly rainfall above 90%-ile, 3 weeks ahead

Future directions

New extended-range configuration at ECMWF (CY48R1)

101 members

- Same horizontal resolution
 as now
- Daily real-time instead of twice weekly
- 101 members instead of 51
- Start at step 0 separately from 15-day higherresolution ensemble

Conclusions

- The S2S database is a useful resource for assessing the skill of current operational S2S models to predict extreme weather events.
- Skill of S2S models to predict MJO has significantly improved over the past 10 years, and S2S models show skill up to 3-4 weeks.
- Russian heat wave 2010: S2S model forecasts provided indications of the possibility of an exceptional warm anomaly more than 10 days in advance.
- Tropical cyclones: S2S models display skill in predicting TC activity and simulate the strong modulation of TC activity by the MJO.
- Preliminary verification of ECMWF S2S forecasts suggests some useful skill for decile and EFI prediction
- Errors in the representation of teleconnections is a key limitation for skillful S2S prediction.

WCRP/WWRP S2S Summit: Advancing Sub-seasonal to Seasonal Predictions and their Applications University of Reading, UK 3rd -7th July 2023

Celebrating 10 years of the Sub-Seasonal to Seasonal Prediction Project and looking to the future

Abstract Submission Opens 15th November 2022

Abstract Submission Deadline 15th January 2023

Abstract Acceptance Notification 28th March 2023

