Evolution and Impacts of Extreme MJO Events
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1. MJO and MJO Events
MJO (Madden-Julian Oscullation) is an eastward equatorially propagating An MJO takes place when the Index Amplitude >1
mode with a strong influence on the precipitation in the tropics on , :
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or dfude Figl: Phase diagram, example of MJO progression
from 03-03-2015 to 09-04-2015. The red circle
marks the beginning of the event and the blue
circle the end of the event.
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2. Extreme Value Analysis, Peak over threshold

Optimal threshold to define extreme MJO events

. . Tm test - multiple threshold test for a GPD, u is the lower value for which the GPD is not rejected
We consider x an extreme if x > t

(Castillo & Serra, 2015)..

Clauset et al’s and A. Deluca’s method (power-law fit)
Fit by maximum likelihood and test goodness of fit by Kolmogorov-Smirnov, using Montecarlo
Simulations.
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Threshold Excluded sample size Order Statistics

. 1 g - Model log-likelihood
The mean excess function represents the Given a sample {x, } of size n of positive numbers, we The Hill estimator is derived as the /(@) = —InL(a Z In f(z;) a 0 : 74
conditional mean of the exceedance size over likelihood estimate of th N ¢ R 1 LE-HOTIN -999.2748
. denote the ordered sample {x . },sothatx = x =< max. l1kelinood estimate or the power - Weibull _576.4721
threshold (given that and exceedance (k) L= "0 coefficient in the Power-law - & '
ocurred.) =X, T he CV-plot is the function cv(t) of the sample distribut § <] (& amami _577.5835
- istribution. o :
coefficient of variation of the threshold excesses (x, -t) - S | Exponential ~a8L-291.{
. . j AIC = 2k - 2In(L) ) GPD _574.0162
Upward trend- heavy tailed behavior ( a for the exceedances {x : X > t} given by where o=1/ is the tail index g - Power-law _574.8893
straight line with positive gradient above —+ oui(d) = sdfx; =t | x; > 1} t=x P2 s o0 ow w2
some threshold is a sign of Pareto behaviour mean{x; —¢ | x; > 1} (k) s
in tail)
3. Evolution of MJO events based on the initial phase Winter
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Composite maps for olr, contour lines delimit the regions with p-values < 0.01. Each column shows events starting in phases 8-1 (top) and ending in

MJO composite in phases 8-1. Velocity potential contours with intervals of 0.5 (left) and phases 6-7 (bottom). Active convection, suppressed convection. Summer events (left), Winter events (Right).

streamfunction contours with intervals of 0.5 (right)
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Conclusions

More and longer events in winter than in summer

More events starting in phases 2-3

A composite of any phase has more events when it starts in phases 2-3
In winter phases 2-3 and 6-7 have similar impacts in America but a bit
northern for phases 6-7.

In summer the impact in America has more variability
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Composite maps for olr, contour lines delimit the regions with p-values < 0.01. Each column shows events starting in phases 8-1 (top) and ending in phases 6-7 (bottom).
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