SYNCHRONIZATION LAGS AS POSSIBLE INDICATORS OF EL NIÑO EVENTS

Giulio Tirabassi, Universitat Politécnica de Catalunya Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22, Terrassa 08222, Spain

ABSTRACT

El Niño/Southern Oscillation (ENSO) is the direct cause of a large number of regional extreme events, such as droughts and floods, and influences greatly the Earth's climate. For this reason, a great effort has been put into developing long-term forecasts that could be employed to anticipate the consequences of ENSO fluctuations. In previous works, it has been shown how synchronization can be employed to anticipate the transition of a reaction-diffusion system from a stable state to another when a control parameter is changed (Tirabassi et al 2022). It has also been shown how during El Niño/La Niña events the tropical Pacific SST synchronizes (Gozolchiani et al 2011). Here we want to show how synchronization can be used as a long-lead indicator of positive ENSO events. In particular, the mean of the lags maximizing the cross-correlation rises around one year before an El Niño event, providing an early indicator that could complement the long-term forecasts currently employed.

METHOD

Close to transitions, spatio-temporal correlation (STC) increase. Neighbours tend to synchronize

$$\tau_{ij} = \underset{1 \le \tau \le \tau_{\max}}{\operatorname{argmax}_{\tau}} \left(\left| \sum_{t} u_i(t) u_j(t+\tau) \right| \right)$$

If two series are close to synchronization, their correlogram will peak at low lags (τ)

We can measure and monitor the evolution of τ distribution, in particular its first moment. If the mean of tau decreases, the system tends to be more synchronized and a transition might be approaching.

The system is more synchronized during El Niño than during La Niña phases. The maximum of the τ averages seem to precede El Niño phases with some lag. The correspondence between the two peaks needs further investigation.

CONCLUSIONS

- El Niño and La Niña present different levels of local synchronization
- During La Niña, the equatorial Pacific SST seem less synchronized.
- Peaks in the lags distribution seem to precede El Niño events, but the time difference is not well definite.